私は、与えられた予測に対するさまざまなクラスの確率を確認できる単純な概念実証を作成しようとしています。
ただし、softmaxアクティベーションを使用している場合でも、試したすべては予測されたクラスのみを出力するようです。私は機械学習を初めて使用するので、単純な間違いを犯しているのか、これがKerasで利用できない機能なのかわかりません。
Keras + TensorFlowを使用しています。 MNISTデータセットを分類するために、Kerasから提供された 基本的な例 の1つを採用しました。
以下の私のコードは、モデルをローカルファイルにエクスポートするいくつかの(コメントされた)追加行を除いて、例とまったく同じです。
'''Trains a simple deep NN on the MNIST dataset.
Gets to 98.40% test accuracy after 20 epochs
(there is *a lot* of margin for parameter tuning).
2 seconds per Epoch on a K520 GPU.
'''
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop
import h5py # added import because it is required for model.save
model_filepath = 'test_model.h5' # added filepath config
batch_size = 128
num_classes = 10
epochs = 20
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,)))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(num_classes, activation='softmax'))
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(),
metrics=['accuracy'])
history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
model.save(model_filepath) # added saving model
print('Model saved') # added log
次に、この2番目の部分は、モデルをインポートし、特定のデータのクラスを予測し、各クラスの確率を出力する単純なスクリプトです。 (私は、Kerasコードベースに含まれている同じmnistクラスを使用して、例をできるだけ簡単にしています)。
import keras
from keras.datasets import mnist
from keras.models import Sequential
import keras.backend as K
import numpy
# loading model saved locally in test_model.h5
model_filepath = 'test_model.h5'
prev_model = keras.models.load_model(model_filepath)
# these lines are copied from the example for loading MNIST data
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784)
# for this example, I am only taking the first 10 images
x_slice = x_train[slice(1, 11, 1)]
# making the prediction
prediction = prev_model.predict(x_slice)
# logging each on a separate line
for single_prediction in prediction:
print(single_prediction)
最初のスクリプトを実行してモデルをエクスポートし、次に2番目のスクリプトを実行していくつかの例を分類すると、次の出力が得られます。
[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
[ 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
[ 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
[ 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
これは、各クラスが予測されるクラスを確認するのに最適ですが、例ごとに各クラスの相対確率を確認するにはどうすればよいですか?私はこのようなものをもっと探しています:
[ 0.94 0.01 0.02 0. 0. 0.01 0. 0.01 0.01 0.]
[ 0. 0. 0. 0. 0.51 0. 0. 0. 0.49 0.]
...
つまり、予測そのものだけでなく、各予測がどれだけ確実かを知る必要があります。相対確率を確認することは、モデルでソフトマックスアクティベーションを使用することの一部であると思いましたが、Kerasのドキュメントで予測された答えの代わりに確率を与えるものを見つけることができません。私はなんらかのばかげた間違いをしているのですか、それともこの機能は利用できませんか?
つまり、問題は予測スクリプトのデータを完全に正規化していなかったことでした。
私の予測スクリプトには次の行が含まれているはずです。
# these lines are copied from the example for loading MNIST data
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784)
x_train = x_train.astype('float32') # this line was missing
x_train /= 255 # this line was missing too
データは浮動小数点数にキャストされず、255で除算されたため(0と1の間)、1と0として表示されていました。
Keras predict
は確かにクラスではなく確率を返します。
私のシステム構成では問題を再現できません:
Python version 2.7.12
Tensorflow version 1.3.0
Keras version 2.0.9
Numpy version 1.13.3
これは、読み込まれたモデルを使用したx_slice
の予測出力です(コードのように、20エポックでトレーニングされています)。
print(prev_model.predict(x_slice))
# Result:
[[ 1.00000000e+00 3.31656316e-37 1.07806675e-21 7.11765177e-30
2.48000320e-31 5.34837679e-28 3.12470132e-24 4.65175406e-27
8.66994134e-31 5.26426367e-24]
[ 0.00000000e+00 5.34361977e-30 3.91144999e-35 0.00000000e+00
1.00000000e+00 0.00000000e+00 1.05583665e-36 1.01395577e-29
0.00000000e+00 1.70868685e-29]
[ 3.99137559e-38 1.00000000e+00 1.76682222e-24 9.33333581e-31
3.99846307e-15 1.17745576e-24 1.87529709e-26 2.18951752e-20
3.57518280e-17 1.62027896e-28]
[ 6.48006586e-26 1.48974980e-17 5.60530329e-22 1.81973780e-14
9.12573406e-10 1.95987500e-14 8.08566866e-27 1.17901132e-12
7.33970447e-13 1.00000000e+00]
[ 2.01602060e-16 6.58242856e-14 1.00000000e+00 6.84244084e-09
1.19809885e-16 7.94907624e-14 3.10690434e-19 8.02848586e-12
4.68330721e-11 5.14736501e-15]
[ 2.31014903e-35 1.00000000e+00 6.02224725e-21 2.35928828e-23
7.50006509e-15 4.06930881e-22 1.13288827e-24 4.20440718e-17
4.95182972e-17 1.85492109e-18]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00
0.00000000e+00 6.30200370e-27 0.00000000e+00 5.19937755e-33
1.63205659e-31 1.21508034e-20]
[ 1.44608573e-26 1.00000000e+00 1.78712268e-18 6.84598301e-19
1.30042071e-11 2.53873986e-14 5.83169942e-17 1.20201071e-12
2.21844570e-14 3.75015198e-15]
[ 0.00000000e+00 6.29184453e-34 9.22474943e-29 0.00000000e+00
1.00000000e+00 3.05067233e-34 1.43097161e-28 1.34234082e-29
4.28647272e-36 9.29760838e-34]
[ 4.68828449e-30 5.55172479e-20 3.26705529e-19 9.99999881e-01
3.49577992e-22 1.27715460e-11 4.99185615e-36 1.19164204e-20
4.21086124e-16 1.52631387e-07]]
印刷時の丸めの問題が疑われます(または、はるかに多くのエポックについてトレーニングしており、トレーニングセットの確率が1に非常に近くなっています)...
実際にクラス予測ではなく確率を取得していることを納得させるために、モデルから予測を取得してみることをお勧めします単一のエポック;通常、表示される1.0
ははるかに少なくなります-epochs=1
用にトレーニングされたmodel
の場合がここにあります。
print(model.predict(x_slice))
# Result:
[[ 9.99916673e-01 5.36548761e-08 6.10747229e-05 8.21199933e-07
6.64725164e-08 6.78853041e-07 9.09637220e-06 4.56192402e-06
1.62688798e-06 5.23997733e-06]
[ 7.59836894e-07 1.78043920e-05 1.79073555e-04 2.95592145e-05
9.98031914e-01 1.75839632e-05 5.90557102e-06 1.27705920e-03
3.94643757e-06 4.36416740e-04]
[ 4.48473330e-08 9.99895334e-01 2.82608235e-05 5.33154832e-07
9.78453227e-06 1.58954310e-06 3.38150176e-06 5.26260410e-05
8.09341054e-06 3.28643267e-07]
[ 7.38236849e-07 4.80247072e-05 2.81726116e-05 4.77648537e-05
7.21933879e-03 2.52177160e-05 3.88786475e-07 3.56770557e-04
2.83472677e-04 9.91990149e-01]
[ 5.03611082e-05 2.69402866e-04 9.92011130e-01 4.68175858e-03
9.57477605e-05 4.26214538e-04 7.66683661e-05 7.05923303e-04
1.45670515e-03 2.26032615e-04]
[ 1.36330849e-10 9.99994516e-01 7.69141934e-07 1.44130311e-07
9.52201333e-07 1.45219332e-07 4.43408908e-07 6.93398249e-07
2.18685204e-06 1.50741769e-07]
[ 2.39427478e-09 3.75754922e-07 3.89349816e-06 9.99889374e-01
1.85837867e-09 1.16176770e-05 1.89989760e-11 3.12301523e-07
1.13220040e-05 8.29571582e-05]
[ 1.45760115e-08 9.99900222e-01 3.67058942e-06 4.04857201e-06
1.97999962e-05 7.85745397e-06 8.13850420e-06 1.87294081e-05
2.81870762e-05 9.38157609e-06]
[ 7.52560858e-09 8.84437856e-09 9.71140025e-07 5.20911703e-10
9.99986649e-01 3.12135370e-07 1.06521384e-05 1.25693066e-06
7.21853368e-08 5.21001624e-08]
[ 8.67672298e-08 2.17907742e-04 2.45352840e-06 9.95455265e-01
1.43749105e-06 1.51766278e-03 1.83744309e-08 3.83995541e-07
9.90309782e-05 2.70584645e-03]]