bazelを使用して、.pb
ファイルをtflite
ファイルに変換しました。ここで、このtflite
モデルをpythonスクリプトにロードして、天気が正しいかどうかをテストしますか?
TensorFlow Lite Pythonインタープリターを使用して、tfliteモデルをpython =シェル、入力データでテストします。
コードは次のようになります。
import numpy as np
import tensorflow as tf
# Load TFLite model and allocate tensors.
interpreter = tf.lite.Interpreter(model_path="converted_model.tflite")
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Test model on random input data.
input_shape = input_details[0]['shape']
input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32)
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
# The function `get_tensor()` returns a copy of the tensor data.
# Use `tensor()` in order to get a pointer to the tensor.
output_data = interpreter.get_tensor(output_details[0]['index'])
print(output_data)
上記のコードは、TensorFlow Lite公式ガイドからのものです、詳細については情報、読み取り this 。