web-dev-qa-db-ja.com

タプルのペア、pythonを使用して最小値を見つける

特定の列でソートするタプルのリストの最小値を見つけたい。たとえば、2タプルのリストとして整理されたデータがあります。

_data = [ (1, 7.57), (2, 2.1), (3, 1.2), (4, 2.1), (5, 0.01), 
         (6, 0.5), (7, 0.2), (8, 0.6)]
_

タプルの2番目の数値のみを比較して、データセットの最小値を見つけるにはどうすればよいですか?

つまり.

_data[0][1] = 7.57
data[1][1] = 2.1
_

min(データ)= _(5, 0.01)_

min( data )は_(1, 7.57)_を返します。これはインデックス0の最小値に対して正しいことを受け入れますが、インデックス1の最小値が必要です。

49
Harry Lime
In [2]: min(data, key = lambda t: t[1])
Out[2]: (5, 0.01)

または:

In [3]: import operator

In [4]: min(data, key=operator.itemgetter(1))
Out[4]: (5, 0.01)
77
Lev Levitsky

Numpy coolaidを飲む場合は、次のコマンドを使用して、アイテムが最小のリストにあるタプルを取得できます。

この機能を実現する要素は、numpyの高度な配列スライシングおよびargsort機能です。

import numpy as np
#create a python list of tuples and convert it to a numpy ndarray of floats
data = np.array([ (1, 7.57), (2, 2.1), (3, 1.2), 
                  (4, 2.1), (5, 0.01), (6, 0.5), (7, 0.2), (8, 0.6)])

print("data is")
print(data)

#Generate sortIndices from second column
sortIndices = np.argsort(data[:,1])

print("sortIndices using index 1 is:" )
print(sortIndices)
print("The column at index 1 is:")
print(data[:,1])
print("Index 1 put into order using column 1")
print(data[sortIndices,1])
print("The tuples put into order using column 1")
print(data[sortIndices,:])
print("The Tuple with minimum value at index 1")
print(data[sortIndices[0],:])
print("The Tuple with maximum value at index 1")
print(data[sortIndices[-1],:])

どの印刷:

data is
[[ 1.    7.57]
 [ 2.    2.1 ]
 [ 3.    1.2 ]
 [ 4.    2.1 ]
 [ 5.    0.01]
 [ 6.    0.5 ]
 [ 7.    0.2 ]
 [ 8.    0.6 ]]

sortIndices using index 1 is:
[4 6 5 7 2 1 3 0]

The column at index 1 is:
[ 7.57  2.1   1.2   2.1   0.01  0.5   0.2   0.6 ]

Index 1 put into order using column 1
[ 0.01  0.2   0.5   0.6   1.2   2.1   2.1   7.57]

The tuples put into order using column 1
[[ 5.    0.01]
 [ 7.    0.2 ]
 [ 6.    0.5 ]
 [ 8.    0.6 ]
 [ 3.    1.2 ]
 [ 2.    2.1 ]
 [ 4.    2.1 ]
 [ 1.    7.57]]

The Tuple with minimum value at index 1
[ 5.    0.01]

The Tuple with maximum value at index 1
[ 1.    7.57]
3
Eric Leschinski

Levの答えは正しいですが、誰かが最初のnミニマに興味がある場合に備えて、sortメソッドも追加したかったのです。考慮すべきことの1つは、min操作のランタイムがO(N)であり、並べ替えがO(N Log N)であるということです。

data = [ (1, 7.57), (2, 2.1), (3, 1.2), (4, 2.1), (5, 0.01), (6, 0.5), (7, 0.2), (8, 0.6)]
data.sort(key=lambda x:x[1])
print data

>>> [(5, 0.01), (7, 0.2), (6, 0.5), (8, 0.6), (3, 1.2), (2, 2.1), (4, 2.1), (1, 7.57)]

https://www.ics.uci.edu/~pattis/ICS-33/lectures/complexitypython.txt

2
user1767754