私の知る限り、pythonのランドインデックスに使用できるパッケージはありませんが、調整済みランドインデックスの場合はsklearn.metrics.adjusted_Rand_score(labels_true, labels_pred)
を使用するオプションがあります。
私はランドスコアのコードを書き、投稿への回答として他の人と共有するつもりです。
from scipy.misc import comb
from itertools import combinations
import numpy as np
def check_clusterings(labels_true, labels_pred):
"""Check that the two clusterings matching 1D integer arrays."""
labels_true = np.asarray(labels_true)
labels_pred = np.asarray(labels_pred)
# input checks
if labels_true.ndim != 1:
raise ValueError(
"labels_true must be 1D: shape is %r" % (labels_true.shape,))
if labels_pred.ndim != 1:
raise ValueError(
"labels_pred must be 1D: shape is %r" % (labels_pred.shape,))
if labels_true.shape != labels_pred.shape:
raise ValueError(
"labels_true and labels_pred must have same size, got %d and %d"
% (labels_true.shape[0], labels_pred.shape[0]))
return labels_true, labels_pred
def Rand_score (labels_true, labels_pred):
"""given the true and predicted labels, it will return the Rand Index."""
check_clusterings(labels_true, labels_pred)
my_pair = list(combinations(range(len(labels_true)), 2)) #create list of all combinations with the length of labels.
def is_equal(x):
return (x[0]==x[1])
my_a = 0
my_b = 0
for i in range(len(my_pair)):
if(is_equal((labels_true[my_pair[i][0]],labels_true[my_pair[i][1]])) == is_equal((labels_pred[my_pair[i][0]],labels_pred[my_pair[i][1]]))
and is_equal((labels_pred[my_pair[i][0]],labels_pred[my_pair[i][1]])) == True):
my_a += 1
if(is_equal((labels_true[my_pair[i][0]],labels_true[my_pair[i][1]])) == is_equal((labels_pred[my_pair[i][0]],labels_pred[my_pair[i][1]]))
and is_equal((labels_pred[my_pair[i][0]],labels_pred[my_pair[i][1]])) == False):
my_b += 1
my_denom = comb(len(labels_true),2)
ri = (my_a + my_b) / my_denom
return ri
簡単な例として:
labels_true = [1, 1, 0, 0, 0, 0]
labels_pred = [0, 0, 0, 1, 0, 1]
Rand_score (labels_true, labels_pred)
#0.46666666666666667
それを改善し、よりPythonicにする方法はおそらくいくつかあります。何か提案があれば、それを改善することができます。
この実装 これは速いようです。
import numpy as np
from scipy.misc import comb
def Rand_index_score(clusters, classes):
tp_plus_fp = comb(np.bincount(clusters), 2).sum()
tp_plus_fn = comb(np.bincount(classes), 2).sum()
A = np.c_[(clusters, classes)]
tp = sum(comb(np.bincount(A[A[:, 0] == i, 1]), 2).sum()
for i in set(clusters))
fp = tp_plus_fp - tp
fn = tp_plus_fn - tp
tn = comb(len(A), 2) - tp - fp - fn
return (tp + tn) / (tp + fp + fn + tn)
簡単な例として:
labels_true = [1, 1, 0, 0, 0, 0]
labels_pred = [0, 0, 0, 1, 0, 1]
Rand_index_score (labels_true, labels_pred)
#0.46666666666666667