指定されたデータセットの各列の欠損値の割合を調べる
import pandas as pd
df = pd.read_csv('https://query.data.world/s/Hfu_PsEuD1Z_yJHmGaxWTxvkz7W_b0')
percent= 100*(len(df.loc[:,df.isnull().sum(axis=0)>=1 ].index) / len(df.index))
print(round(percent,2))
入力は https://query.data.world/s/Hfu_PsEuD1Z_yJHmGaxWTxvkz7W_b
出力は次のようになります
Ord_id 0.00
Prod_id 0.00
Ship_id 0.00
Cust_id 0.00
Sales 0.24
Discount 0.65
Order_Quantity 0.65
Profit 0.65
Shipping_Cost 0.65
Product_Base_Margin 1.30
dtype: float64
これはどう?以前、ここで似たようなものを実際に一度見つけたと思いますが、今は見ていません...
percent_missing = df.isnull().sum() * 100 / len(df)
missing_value_df = pd.DataFrame({'column_name': df.columns,
'percent_missing': percent_missing})
不足しているパーセンテージをソートする場合は、上記に従ってください:
missing_value_df.sort_values('percent_missing', inplace=True)
コメントで述べたように、上記のコードの最初の行だけでうまくいくかもしれません:
percent_missing = df.isnull().sum() * 100 / len(df)
更新して、mean
でisnull
を使用しましょう:
df.isnull().mean() * 100
出力:
Ord_id 0.000000
Prod_id 0.000000
Ship_id 0.000000
Cust_id 0.000000
Sales 0.238124
Discount 0.654840
Order_Quantity 0.654840
Profit 0.654840
Shipping_Cost 0.654840
Product_Base_Margin 1.297774
dtype: float64
IIUC:
df.isnull().sum() / df.shape[0] * 100.00
出力:
Ord_id 0.000000
Prod_id 0.000000
Ship_id 0.000000
Cust_id 0.000000
Sales 0.238124
Discount 0.654840
Order_Quantity 0.654840
Profit 0.654840
Shipping_Cost 0.654840
Product_Base_Margin 1.297774
dtype: float64
すべてのmissing値をカバーし、結果を丸めるには:
((df.isnull() | df.isna()).sum() * 100 / df.index.size).round(2)
出力:
Out[556]:
Ord_id 0.00
Prod_id 0.00
Ship_id 0.00
Cust_id 0.00
Sales 0.24
Discount 0.65
Order_Quantity 0.65
Profit 0.65
Shipping_Cost 0.65
Product_Base_Margin 1.30
dtype: float64
import numpy as np
import pandas as pd
raw_data = {'first_name': ['Jason', np.nan, 'Tina', 'Jake', 'Amy'],
'last_name': ['Miller', np.nan, np.nan, 'Milner', 'Cooze'],
'age': [22, np.nan, 23, 24, 25],
'sex': ['m', np.nan, 'f', 'm', 'f'],
'Test1_Score': [4, np.nan, 0, 0, 0],
'Test2_Score': [25, np.nan, np.nan, 0, 0]}
results = pd.DataFrame(raw_data, columns = ['first_name', 'last_name', 'age', 'sex', 'Test1_Score', 'Test2_Score'])
results
first_name last_name age sex Test1_Score Test2_Score
0 Jason Miller 22.0 m 4.0 25.0
1 NaN NaN NaN NaN NaN NaN
2 Tina NaN 23.0 f 0.0 NaN
3 Jake Milner 24.0 m 0.0 0.0
4 Amy Cooze 25.0 f 0.0 0.0
次の関数を使用できます。これにより、Dataframeで出力が得られます。
- ゼロ値
- 欠損値
- 合計値の割合
- 合計ゼロ欠損値
- ゼロ欠損値の合計
- データ・タイプ
次の関数をコピーして貼り付け、pandas Dataframe
def missing_zero_values_table(df):
zero_val = (df == 0.00).astype(int).sum(axis=0)
mis_val = df.isnull().sum()
mis_val_percent = 100 * df.isnull().sum() / len(df)
mz_table = pd.concat([zero_val, mis_val, mis_val_percent], axis=1)
mz_table = mz_table.rename(
columns = {0 : 'Zero Values', 1 : 'Missing Values', 2 : '% of Total Values'})
mz_table['Total Zero Missing Values'] = mz_table['Zero Values'] + mz_table['Missing Values']
mz_table['% Total Zero Missing Values'] = 100 * mz_table['Total Zero Missing Values'] / len(df)
mz_table['Data Type'] = df.dtypes
mz_table = mz_table[
mz_table.iloc[:,1] != 0].sort_values(
'% of Total Values', ascending=False).round(1)
print ("Your selected dataframe has " + str(df.shape[1]) + " columns and " + str(df.shape[0]) + " Rows.\n"
"There are " + str(mz_table.shape[0]) +
" columns that have missing values.")
# mz_table.to_Excel('D:/sampledata/missing_and_zero_values.xlsx', freeze_panes=(1,0), index = False)
return mz_table
missing_zero_values_table(results)
出力
Your selected dataframe has 6 columns and 5 Rows.
There are 6 columns that have missing values.
Zero Values Missing Values % of Total Values Total Zero Missing Values % Total Zero Missing Values Data Type
last_name 0 2 40.0 2 40.0 object
Test2_Score 2 2 40.0 4 80.0 float64
first_name 0 1 20.0 1 20.0 object
age 0 1 20.0 1 20.0 float64
sex 0 1 20.0 1 20.0 object
Test1_Score 3 1 20.0 4 80.0 float64
シンプルにしたい場合は、次の関数を使用して%の欠損値を取得できます
def missing(dff):
print (round((dff.isnull().sum() * 100/ len(dff)),2).sort_values(ascending=False))
missing(results)
Test2_Score 40.0
last_name 40.0
Test1_Score 20.0
sex 20.0
age 20.0
first_name 20.0
dtype: float64
あなたが探している解決策は次のとおりです。
round(df.isnull().mean()*100,2)
これにより、パーセンテージが小数点以下2桁に切り上げられます。
これを行う別の方法は
round((df.isnull().sum()*100)/len(df),2)
しかし、これはmean()を使用するのと同様に効率的ではありません。