web-dev-qa-db-ja.com

2つのcsvファイルをpython pandas

2つのcsvファイルがあります。どちらも2つの列で構成されています。

1つ目は製品IDで、2つ目はシリアル番号です。

最初のcsvからすべてのシリアル番号を検索し、2番目のcsvで一致するものを見つける必要があります。結果レポートには、一致したシリアル番号と、各csvの対応する製品IDが、以下のコードを変更するために真に適用された別の列に表示されます。

これにどのようにアプローチしますか?

import pandas as pd
    A=set(pd.read_csv("c1.csv", index_col=False, header=None)[0]) #reads the csv, takes only the first column and creates a set out of it.
    B=set(pd.read_csv("c2.csv", index_col=False, header=None)[0]) #same here
    print(A-B) #set A - set B gives back everything thats only in A.
    print(B-A) # same here, other way around.
5
poyim

必要だと思います merge

A = pd.DataFrame({'product id':   [1455,5452,3775],
                    'serial number':[44,55,66]})

print (A)

B = pd.DataFrame({'product id':   [7000,2000,1000],
                    'serial number':[44,55,77]})

print (B)

print (pd.merge(A, B, on='serial number'))
   product id_x  serial number  product id_y
0          1455             44          7000
1          5452             55          2000
6
jezrael

これを試して:

A = pd.read_csv("c1.csv", header=None, usecols=[0], names=['col']).drop_duplicates()
B = pd.read_csv("c2.csv", header=None, usecols=[0], names=['col']).drop_duplicates()
# A - B
pd.merge(A, B, on='col', how='left', indicator=True).query("_merge == 'left_only'")
# B - A
pd.merge(A, B, on='col', how='right', indicator=True).query("_merge == 'right_only'")
3
MaxU

DfをSetsに変換すると、データの比較中にインデックスが無視され、 set symmetric_difference を使用できます。

ds1 = set([ Tuple(values) for values in df1.values.tolist()])
ds2 = set([ Tuple(values) for values in df2.values.tolist()])

ds1.symmetric_difference(ds2)
print df1 ,'\n\n'
print df2,'\n\n'

print pd.DataFrame(list(ds1.difference(ds2))),'\n\n'
print pd.DataFrame(list(ds2.difference(ds1))),'\n\n'

df1

id  Name  score isEnrolled               Comment
0  111  Jack   2.17       True  He was late to class
1  112  Nick   1.11      False             Graduated
2  113   Zoe   4.12       True                   NaN 

df2

    id  Name  score isEnrolled               Comment
0  111  Jack   2.17       True  He was late to class
1  112  Nick   1.21      False             Graduated
2  113   Zoe   4.12      False           On vacation 

出力

     0     1     2      3          4
0  113   Zoe  4.12   True        NaN
1  112  Nick  1.11  False  Graduated 


     0     1     2      3            4
0  113   Zoe  4.12  False  On vacation
1  112  Nick  1.21  False    Graduated 
1
Shijo