web-dev-qa-db-ja.com

h5pyを使用して大きなhdf5データセットを作成する

現在、h5pyを使用してhdf5データセットを生成しています。私はこのようなものを持っています

_import h5py
import numpy as np
my_data=np.genfromtxt("/tmp/data.csv",delimiter=",",dtype=None,names=True)

myFile="/tmp/f.hdf"    
with h5py.File(myFile,"a") as f:
  dset = f.create_dataset('%s/%s'%(vendor,dataSet),data=my_data,compression="gzip",compression_opts=9)
_

これは、比較的大きなASCIIファイル(400MB)でうまく機能します。さらに大きなデータセット(40GB)でも同じことをしたいと思います。これを行うためのより良いまたはより効率的な方法はありますか? h5py?データセット全体をメモリにロードしないようにしたい。

データに関するいくつかの情報:

  1. データの種類がわかりません。理想的には、np.loadtxt()の_dtype=None_を使用したいと思います。
  2. ファイルのサイズ(寸法)がわかりません。それらは異なります
13
NinjaGaiden

テキストファイルの先頭にある行の小さなチャンクを読み取ることで、データのdtypeを推測できます。これらを取得したら、 サイズ変更可能なHDF5データセット を作成し、テキストファイルからそれに行のチャンクを繰り返し書き込むことができます。

これは、テキストファイルから連続する行のチャンクをnumpy配列として生成するジェネレーターです。

import numpy as np
import warnings


def iter_genfromtxt(path, chunksize=100, **kwargs):
    """Yields consecutive chunks of rows from a text file as numpy arrays.

    Args:
      path: Path to the text file.
      chunksize: Maximum number of rows to yield at a time.
      **kwargs: Additional keyword arguments are passed to `np.genfromtxt`,
        with the exception of `skip_footer` which is unsupported.
    Yields:
      A sequence of `np.ndarray`s with a maximum row dimension of `chunksize`.
    """
    names = kwargs.pop('names', None)
    max_rows = kwargs.pop('max_rows', None)
    skip_header = kwargs.pop('skip_header', kwargs.pop('skiprows', 0))
    if kwargs.pop('skip_footer', None) is not None:
        warnings.warn('`skip_footer` will be ignored')

    with open(path, 'rb') as f:

        # The first chunk is handled separately, since we may wish to skip rows,
        # read column headers etc.
        chunk = np.genfromtxt(f, max_rows=chunksize, skip_header=skip_header,
                              names=names, **kwargs)
        # Ensure that subsequent chunks have consistent dtypes and field names
        kwargs.update({'dtype':chunk.dtype})

        while len(chunk):
            yield chunk[:max_rows]
            if max_rows is not None:
                max_rows -= len(chunk)
                if max_rows <= 0:
                     raise StopIteration
            chunk = np.genfromtxt(f, max_rows=chunksize, **kwargs)

ここで、以下を含む.csvファイルがあるとします。

strings,ints,floats
a,1,0.1256290043
b,2,0.0071402451
c,3,0.2551627907
d,4,0.7958570533
e,5,0.8968247722
f,6,0.7291124437
g,7,0.4196829806
h,8,0.398944394
i,9,0.8718244087
j,10,0.67605461
k,11,0.7105670336
l,12,0.6341504091
m,13,0.1324232855
n,14,0.7062503808
o,15,0.1915132527
p,16,0.4140093777
q,17,0.1458217602
r,18,0.1183596433
s,19,0.0014556247
t,20,0.1649811301

このデータを一度に5行のチャンクで読み取り、結果の配列をサイズ変更可能なデータセットに書き込むことができます。

import h5py

# Initialize the generator
gen = iter_genfromtxt('/tmp/test.csv', chunksize=5, delimiter=',', names=True,
                      dtype=None)

# Read the first chunk to get the column dtypes
chunk = next(gen)
dtype = chunk.dtype
row_count = chunk.shape[0]

with h5py.File('/tmp/test.h5', 'w') as f:

    # Initialize a resizable dataset to hold the output
    maxshape = (None,) + chunk.shape[1:]
    dset = f.create_dataset('data', shape=chunk.shape, maxshape=maxshape,
                            chunks=chunk.shape, dtype=chunk.dtype)

    # Write the first chunk of rows
    dset[:] = chunk

    for chunk in gen:

        # Resize the dataset to accommodate the next chunk of rows
        dset.resize(row_count + chunk.shape[0], axis=0)

        # Write the next chunk
        dset[row_count:] = chunk

        # Increment the row count
        row_count += chunk.shape[0]

出力:

with h5py.File('/tmp/test.h5', 'r') as f:
    print(repr(f['data'][:]))

# array([(b'a', 1, 0.1256290043), (b'b', 2, 0.0071402451),
#        (b'c', 3, 0.2551627907), (b'd', 4, 0.7958570533),
#        (b'e', 5, 0.8968247722), (b'f', 6, 0.7291124437),
#        (b'g', 7, 0.4196829806), (b'h', 8, 0.398944394),
#        (b'i', 9, 0.8718244087), (b'j', 10, 0.67605461),
#        (b'k', 11, 0.7105670336), (b'l', 12, 0.6341504091),
#        (b'm', 13, 0.1324232855), (b'n', 14, 0.7062503808),
#        (b'o', 15, 0.1915132527), (b'p', 16, 0.4140093777),
#        (b'q', 17, 0.1458217602), (b'r', 18, 0.1183596433),
#        (b's', 19, 0.0014556247), (b't', 20, 0.1649811301)], 
#       dtype=[('strings', 'S1'), ('ints', '<i8'), ('floats', '<f8')])

データセットには、より大きなチャンクサイズを使用することをお勧めします。

18
ali_m