Pandasのpython Libraryを使用して.xlsxファイルを読み取り、データをpostgreSQLテーブルに移植します。
今までできることは次のとおりです。
import pandas as pd
data = pd.ExcelFile("*File Name*")
これでステップが正常に実行されたことがわかりましたが、Excelのデータが変数データのデータにマップされる方法を理解できるように、読み取ったExcelファイルを解析する方法を知りたいです。
間違っていなければ、データはDataframeオブジェクトであることを学びました。したがって、このデータフレームオブジェクトを解析して行ごとに各行を抽出するにはどうすればよいですか?.
通常、すべてのシートにDataFrame
を含む辞書を作成します。
xl_file = pd.ExcelFile(file_name)
dfs = {sheet_name: xl_file.parse(sheet_name)
for sheet_name in xl_file.sheet_names}
更新:pandasバージョン0.21.0+では、 sheet_name=None
を read_Excel
に渡すことで、この動作をよりきれいに取得できます。
dfs = pd.read_Excel(file_name, sheet_name=None)
0.20以前では、これはsheet_name
ではなくsheetname
でした(これは現在、上記を支持して廃止されています):
dfs = pd.read_Excel(file_name, sheetname=None)
from pandas import read_Excel
# find your sheet name at the bottom left of your Excel file and assign
# it to sheet_name
my_sheet = 'Sheet1'
file_name = 'products_and_categories.xlsx' # name of your Excel file
df = read_Excel(file_name, sheet_name = my_sheet)
print(df.head()) # shows headers with top 5 rows
DataFrameのread_Excel
メソッドはread_csv
メソッドに似ています:
dfs = pd.read_Excel(xlsx_file, sheetname="sheet1")
Help on function read_Excel in module pandas.io.Excel:
read_Excel(io, sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None, names=None, parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, true_values=None, false_values=None, engine=None, squeeze=False, **kwds)
Read an Excel table into a pandas DataFrame
Parameters
----------
io : string, path object (pathlib.Path or py._path.local.LocalPath),
file-like object, pandas ExcelFile, or xlrd workbook.
The string could be a URL. Valid URL schemes include http, ftp, s3,
and file. For file URLs, a Host is expected. For instance, a local
file could be file://localhost/path/to/workbook.xlsx
sheetname : string, int, mixed list of strings/ints, or None, default 0
Strings are used for sheet names, Integers are used in zero-indexed
sheet positions.
Lists of strings/integers are used to request multiple sheets.
Specify None to get all sheets.
str|int -> DataFrame is returned.
list|None -> Dict of DataFrames is returned, with keys representing
sheets.
Available Cases
* Defaults to 0 -> 1st sheet as a DataFrame
* 1 -> 2nd sheet as a DataFrame
* "Sheet1" -> 1st sheet as a DataFrame
* [0,1,"Sheet5"] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames
* None -> All sheets as a dictionary of DataFrames
header : int, list of ints, default 0
Row (0-indexed) to use for the column labels of the parsed
DataFrame. If a list of integers is passed those row positions will
be combined into a ``MultiIndex``
skiprows : list-like
Rows to skip at the beginning (0-indexed)
skip_footer : int, default 0
Rows at the end to skip (0-indexed)
index_col : int, list of ints, default None
Column (0-indexed) to use as the row labels of the DataFrame.
Pass None if there is no such column. If a list is passed,
those columns will be combined into a ``MultiIndex``
names : array-like, default None
List of column names to use. If file contains no header row,
then you should explicitly pass header=None
converters : dict, default None
Dict of functions for converting values in certain columns. Keys can
either be integers or column labels, values are functions that take one
input argument, the Excel cell content, and return the transformed
content.
true_values : list, default None
Values to consider as True
.. versionadded:: 0.19.0
false_values : list, default None
Values to consider as False
.. versionadded:: 0.19.0
parse_cols : int or list, default None
* If None then parse all columns,
* If int then indicates last column to be parsed
* If list of ints then indicates list of column numbers to be parsed
* If string then indicates comma separated list of column names and
column ranges (e.g. "A:E" or "A,C,E:F")
squeeze : boolean, default False
If the parsed data only contains one column then return a Series
na_values : scalar, str, list-like, or dict, default None
Additional strings to recognize as NA/NaN. If dict passed, specific
per-column NA values. By default the following values are interpreted
as NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan',
'1.#IND', '1.#QNAN', 'N/A', 'NA', 'NULL', 'NaN', 'nan'.
thousands : str, default None
Thousands separator for parsing string columns to numeric. Note that
this parameter is only necessary for columns stored as TEXT in Excel,
any numeric columns will automatically be parsed, regardless of display
format.
keep_default_na : bool, default True
If na_values are specified and keep_default_na is False the default NaN
values are overridden, otherwise they're appended to.
verbose : boolean, default False
Indicate number of NA values placed in non-numeric columns
engine: string, default None
If io is not a buffer or path, this must be set to identify io.
Acceptable values are None or xlrd
convert_float : boolean, default True
convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric
data will be read in as floats: Excel stores all numbers as floats
internally
has_index_names : boolean, default None
DEPRECATED: for version 0.17+ index names will be automatically
inferred based on index_col. To read Excel output from 0.16.2 and
prior that had saved index names, use True.
Returns
-------
parsed : DataFrame or Dict of DataFrames
DataFrame from the passed in Excel file. See notes in sheetname
argument for more information on when a Dict of Dataframes is returned.
スプレッドシートのファイル名をfile
に割り当てます
スプレッドシートを読み込む
シート名を印刷する
Df1という名前でシートをDataFrameにロードします
file = 'example.xlsx'
xl = pd.ExcelFile(file)
print(xl.sheet_names)
df1 = xl.parse('Sheet1')
関数read_Excel()
を使用して開いたファイルでopen()
を使用する場合は、エンコードエラーを回避するために、開いている関数にrb
を追加してください。
シート名を使用する代わりに、Excelファイルを知らない、または開くことができない場合、ubuntu(私の場合、Python 3.6.7、ubuntu 18.04)をチェックインするために、パラメーターを使用しますindex_col(最初のシートのindex_col = 0)
import pandas as pd
file_name = 'some_data_file.xlsx'
df = pd.read_Excel(file_name, index_col=0)
print(df.head()) # print the first 5 rows