web-dev-qa-db-ja.com

keras双方向lstmseq2seq

Kerasのlstm_seq2seq.pyの例を変更して、双方向のlstmモデルに変更しようとしています。

https://github.com/keras-team/keras/blob/master/examples/lstm_seq2seq.py

私はさまざまなアプローチを試します:

  • 1つ目は、双方向ラッパーをLSTMレイヤーに直接適用することでした。

    encoder_inputs = Input(shape=(None, num_encoder_tokens))
    encoder = Bidirectional(LSTM(latent_dim, return_state=True))
    

しかし、私はこのエラーメッセージを受け取りました:

---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-76-a80f8554ab09> in <module>()
     75 encoder = Bidirectional(LSTM(latent_dim, return_state=True))
     76 
---> 77 encoder_outputs, state_h, state_c = encoder(encoder_inputs)
     78 # We discard `encoder_outputs` and only keep the states.
     79 encoder_states = [state_h, state_c]

/home/tristanbf/.virtualenvs/pydev3/lib/python3.5/site-packages/keras/engine/topology.py in __call__(self, inputs, **kwargs)
    601 
    602             # Actually call the layer, collecting output(s), mask(s), and shape(s).
--> 603             output = self.call(inputs, **kwargs)
    604             output_mask = self.compute_mask(inputs, previous_mask)
    605 

/home/tristanbf/.virtualenvs/pydev3/lib/python3.5/site-packages/keras/layers/wrappers.py in call(self, inputs, training, mask)
    293             y_rev = K.reverse(y_rev, 1)
    294         if self.merge_mode == 'concat':
--> 295             output = K.concatenate([y, y_rev])
    296         Elif self.merge_mode == 'sum':
    297             output = y + y_rev

/home/tristanbf/.virtualenvs/pydev3/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py in concatenate(tensors, axis)
   1757     """
   1758     if axis < 0:
-> 1759         rank = ndim(tensors[0])
   1760         if rank:
   1761             axis %= rank

/home/tristanbf/.virtualenvs/pydev3/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py in ndim(x)
    597     ```
    598     """
--> 599     dims = x.get_shape()._dims
    600     if dims is not None:
    601         return len(dims)

AttributeError: 'list' object has no attribute 'get_shape'
  • 私の2番目の推測は、入力を次のように変更することでした https://github.com/keras-team/keras/blob/master/examples/imdb_bidirection_lstm.py

    encoder_input_data = np.empty(len(input_texts), dtype=object)
    decoder_input_data = np.empty(len(input_texts), dtype=object)
    decoder_target_data = np.empty(len(input_texts), dtype=object)
    
    for i, (input_text, target_text) in enumerate(Zip(input_texts, target_texts)):
        encoder_input_data[i] = [input_token_index[char] for char in input_text]
        tseq = [target_token_index[char] for char in target_text]
        decoder_input_data[i] = tseq
        decoder_output_data[i] = tseq[1:]
    
    encoder_input_data = sequence.pad_sequences(encoder_input_data, maxlen=max_encoder_seq_length)
    decoder_input_data = sequence.pad_sequences(decoder_input_data, maxlen=max_decoder_seq_length)
    decoder_target_data = sequence.pad_sequences(decoder_target_data, maxlen=max_decoder_seq_length)
    

しかし、私は同じエラーメッセージを受け取りました:

---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-75-474b2515be72> in <module>()
     73 encoder = Bidirectional(LSTM(latent_dim, return_state=True))
     74 
---> 75 encoder_outputs, state_h, state_c = encoder(encoder_inputs)
     76 # We discard `encoder_outputs` and only keep the states.
     77 encoder_states = [state_h, state_c]

/home/tristanbf/.virtualenvs/pydev3/lib/python3.5/site-packages/keras/engine/topology.py in __call__(self, inputs, **kwargs)
    601 
    602             # Actually call the layer, collecting output(s), mask(s), and shape(s).
--> 603             output = self.call(inputs, **kwargs)
    604             output_mask = self.compute_mask(inputs, previous_mask)
    605 

/home/tristanbf/.virtualenvs/pydev3/lib/python3.5/site-packages/keras/layers/wrappers.py in call(self, inputs, training, mask)
    293             y_rev = K.reverse(y_rev, 1)
    294         if self.merge_mode == 'concat':
--> 295             output = K.concatenate([y, y_rev])
    296         Elif self.merge_mode == 'sum':
    297             output = y + y_rev

/home/tristanbf/.virtualenvs/pydev3/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py in concatenate(tensors, axis)
   1757     """
   1758     if axis < 0:
-> 1759         rank = ndim(tensors[0])
   1760         if rank:
   1761             axis %= rank

/home/tristanbf/.virtualenvs/pydev3/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py in ndim(x)
    597     ```
    598     """
--> 599     dims = x.get_shape()._dims
    600     if dims is not None:
    601         return len(dims)

AttributeError: 'list' object has no attribute 'get_shape'

何か助けはありますか?ありがとう

(コード: https://Gist.github.com/anonymous/c0fd6541ab4fc9c2c1e0b86175fb65c7

8
JJ E. D.

表示されているエラーは、Bidirectionalラッパーが状態テンソルを適切に処理していないためです。 このPR で修正しましたが、すでに最新の2.1.3リリースに含まれています。したがって、Kerasを最新バージョンにアップグレードすると、質問の行が機能するはずです。

Bidirectional(LSTM(..., return_state=True))からの戻り値は、以下を含むリストであることに注意してください。

  1. レイヤー出力
  2. (h, c)フォワードレイヤーの
  3. (h, c)後方層の

したがって、状態テンソルをデコーダーに渡す前にマージする必要がある場合があります(通常は単方向であると思います)。たとえば、状態を連結することを選択した場合、

encoder_inputs = Input(shape=(None, num_encoder_tokens))
encoder = Bidirectional(LSTM(latent_dim, return_state=True))
encoder_outputs, forward_h, forward_c, backward_h, backward_c = encoder(encoder_inputs)

state_h = Concatenate()([forward_h, backward_h])
state_c = Concatenate()([forward_c, backward_c])
encoder_states = [state_h, state_c]

decoder_inputs = Input(shape=(None, num_decoder_tokens))
decoder_lstm = LSTM(latent_dim * 2, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)
13
Yu-Yang

問題がデータ準備プロセスに関連している場合、概念的にはこれに似ています one 単純なリストには、通常Numpyによって追加される形状属性がありません。

また、入力をLSTMエンコーダーにフィードするか、単にinput_shape値をLSTMレイヤーに設定する必要があります。双方向をフィードする場合は、LSTMレイヤー内で常にreturn_sequences = Trueを使用してください。これをチェックしてください thread 正しく使用する方法を理解してから、 my GitHub でNLPプロジェクト(双方向レイヤーも使用)用に作成したコードのいくつかの行をチェックしてください

0
MrJs0n