Keras 2.02(Tensorflowバックエンドを使用)でマルチクラス分類器を構築しています。Kerasで精度とリコールを計算する方法がわかりません。私を助けてください。
Pythonパッケージ keras-metrics はこれに役立ちます(私はパッケージの作成者です)。
import keras
import keras_metrics
model = models.Sequential()
model.add(keras.layers.Dense(1, activation="sigmoid", input_dim=2))
model.add(keras.layers.Dense(1, activation="softmax"))
model.compile(optimizer="sgd",
loss="binary_crossentropy",
metrics=[keras_metrics.precision(), keras_metrics.recall()])
私の答えは Keras GH問題のコメント に基づいています。ワンホットエンコードされた分類タスクのすべてのエポックで検証精度とリコールを計算します。また、これを見てください SO回答keras.backend
機能を使用してそれを行う方法を確認してください。
import keras as keras
import numpy as np
from keras.optimizers import SGD
from sklearn.metrics import precision_score, recall_score
model = keras.models.Sequential()
# ...
sgd = SGD(lr=0.001, momentum=0.9)
model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy'])
class Metrics(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self._data = []
def on_Epoch_end(self, batch, logs={}):
X_val, y_val = self.validation_data[0], self.validation_data[1]
y_predict = np.asarray(model.predict(X_val))
y_val = np.argmax(y_val, axis=1)
y_predict = np.argmax(y_predict, axis=1)
self._data.append({
'val_recall': recall_score(y_val, y_predict),
'val_precision': precision_score(y_val, y_predict),
})
return
def get_data(self):
return self._data
metrics = Metrics()
history = model.fit(X_train, y_train, epochs=100, validation_data=(X_val, y_val), callbacks=[metrics])
metrics.get_data()
このスレッドは少し古いですが、念のためここに着陸する誰かを助けます。 Keras v2.1.6にアップグレードする場合は、ステートフルメトリックを機能させるために多くの作業が行われていますが、さらに作業が行われているようです( https://github.com/keras -team/keras/pull/9446 )。
とにかく、精度/リコールを統合する最良の方法は、 BinaryTruePositives の例で示されているLayer
をサブクラス化するカスタムメトリックを使用することです。
思い出してください。これは次のようになります。
class Recall(keras.layers.Layer):
"""Stateful Metric to count the total recall over all batches.
Assumes predictions and targets of shape `(samples, 1)`.
# Arguments
name: String, name for the metric.
"""
def __init__(self, name='recall', **kwargs):
super(Recall, self).__init__(name=name, **kwargs)
self.stateful = True
self.recall = K.variable(value=0.0, dtype='float32')
self.true_positives = K.variable(value=0, dtype='int32')
self.false_negatives = K.variable(value=0, dtype='int32')
def reset_states(self):
K.set_value(self.recall, 0.0)
K.set_value(self.true_positives, 0)
K.set_value(self.false_negatives, 0)
def __call__(self, y_true, y_pred):
"""Computes the number of true positives in a batch.
# Arguments
y_true: Tensor, batch_wise labels
y_pred: Tensor, batch_wise predictions
# Returns
The total number of true positives seen this Epoch at the
completion of the batch.
"""
y_true = K.cast(y_true, 'int32')
y_pred = K.cast(K.round(y_pred), 'int32')
# False negative calculations
y_true = K.cast(y_true, 'int32')
y_pred = K.cast(K.round(y_pred), 'int32')
false_neg = K.cast(K.sum(K.cast(K.greater(y_pred, y_true), 'int32')), 'int32')
current_false_neg = self.false_negatives * 1
self.add_update(K.update_add(self.false_negatives,
false_neg),
inputs=[y_true, y_pred])
# True positive calculations
correct_preds = K.cast(K.equal(y_pred, y_true), 'int32')
true_pos = K.cast(K.sum(correct_preds * y_true), 'int32')
current_true_pos = self.true_positives * 1
self.add_update(K.update_add(self.true_positives,
true_pos),
inputs=[y_true, y_pred])
# Combine
recall = (K.cast(self.true_positives, 'float32') / (K.cast(self.true_positives, 'float32') + K.cast(self.false_negatives, 'float32') + K.cast(K.epsilon(), 'float32')))
self.add_update(K.update(self.recall,
recall),
inputs=[y_true, y_pred])
return recall
これにはScikit Learnフレームワークを使用します。
from sklearn.metrics import classification_report
history = model.fit(x_train, y_train, batch_size=32, epochs=10, verbose=1, validation_data=(x_test, y_test), shuffle=True)
pred = model.predict(x_test, batch_size=32, verbose=1)
predicted = np.argmax(pred, axis=1)
report = classification_report(np.argmax(y_test, axis=1), predicted)
print(report)
このブログ は非常に便利です。