次のデータの正規分布をプロットするのを手伝ってください:
データ:
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
h = [186, 176, 158, 180, 186, 168, 168, 164, 178, 170, 189, 195, 172,
187, 180, 186, 185, 168, 179, 178, 183, 179, 170, 175, 186, 159,
161, 178, 175, 185, 175, 162, 173, 172, 177, 175, 172, 177, 180]
std = np.std(h)
mean = np.mean(h)
plt.plot(norm.pdf(h,mean,std))
出力:
Standard Deriviation = 8.54065575872
mean = 176.076923077
プロットが間違っていますが、私のコードの何が問題になっていますか?
hist
を使用して、以下のようにデータ情報を近似曲線と一緒に配置してみてください。
import numpy as np
import scipy.stats as stats
import pylab as pl
h = sorted([186, 176, 158, 180, 186, 168, 168, 164, 178, 170, 189, 195, 172,
187, 180, 186, 185, 168, 179, 178, 183, 179, 170, 175, 186, 159,
161, 178, 175, 185, 175, 162, 173, 172, 177, 175, 172, 177, 180]) #sorted
fit = stats.norm.pdf(h, np.mean(h), np.std(h)) #this is a fitting indeed
pl.plot(h,fit,'-o')
pl.hist(h,normed=True) #use this to draw histogram of your data
pl.show() #use may also need add this
scipy.stats
からnorm
を取得していると仮定すると、おそらくリストをソートする必要があるだけです。
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
h = [186, 176, 158, 180, 186, 168, 168, 164, 178, 170, 189, 195, 172,
187, 180, 186, 185, 168, 179, 178, 183, 179, 170, 175, 186, 159,
161, 178, 175, 185, 175, 162, 173, 172, 177, 175, 172, 177, 180]
h.sort()
hmean = np.mean(h)
hstd = np.std(h)
pdf = stats.norm.pdf(h, hmean, hstd)
plt.plot(h, pdf) # including h here is crucial
そして、私は得る: