pythonを含む3次元データを含むタプルのリストがあります。各タプルは(x、y、z、data_value)の形式です。つまり、それぞれにデータ値があります( x、y、z)座標。タプルのリストのdata_valuesの値を表す3D離散ヒートマッププロットを作成します。ここでは、2Dデータセットのこのようなヒートマップの例を示します。 (x、y、data_value)タプルのリスト:
import matplotlib.pyplot as plt
from matplotlib import colors
import numpy as np
from random import randint
# x and y coordinates
x = np.array(range(10))
y = np.array(range(10,15))
data = np.zeros((len(y),len(x)))
# Generate some discrete data (1, 2 or 3) for each (x, y) pair
for i,yy in enumerate(y):
for j, xx in enumerate(x):
data[i,j] = randint(1,3)
# Map 1, 2 and 3 to 'Red', 'Green' qnd 'Blue', respectively
colormap = colors.ListedColormap(['Red', 'Green', 'Blue'])
colorbar_ticklabels = ['1', '2', '3']
# Use matshow to create a heatmap
fig, ax = plt.subplots()
ms = ax.matshow(data, cmap = colormap, vmin=data.min() - 0.5, vmax=data.max() + 0.5, Origin = 'lower')
# x and y axis ticks
ax.set_xticklabels([str(xx) for xx in x])
ax.set_yticklabels([str(yy) for yy in y])
ax.xaxis.tick_bottom()
# Put the x- qnd y-axis ticks at the middle of each cell
ax.set_xticks(np.arange(data.shape[1]), minor = False)
ax.set_yticks(np.arange(data.shape[0]), minor = False)
# Set custom ticks and ticklabels for color bar
cbar = fig.colorbar(ms,ticks = np.arange(np.min(data),np.max(data)+1))
cbar.ax.set_yticklabels(colorbar_ticklabels)
plt.show()
データに3次元がある場合、3D空間(つまり、Z軸)で同様のプロットを作成するにはどうすればよいですか。たとえば、
# x and y and z coordinates
x = np.array(range(10))
y = np.array(range(10,15))
z = np.array(range(15,20))
data = np.zeros((len(y),len(x), len(y)))
# Generate some random discrete data (1, 2 or 3) for each (x, y, z) triplet.
# Am I defining i, j and k correctly here?
for i,yy in enumerate(y):
for j, xx in enumerate(x):
for k, zz in enumerate(z):
data[i,j, k] = randint(1,3)
plot_surface in mplot3d はこれを実行できるはずですが、この関数の入力のzは基本的に(x、y)座標のデータの値、つまり(x、y、z = data_value)、これは私が持っているものとは異なります、つまり(x、y、z、data_value)。
私たちは本当にここに3Dテトリスゲームが欲しいと思っているようです;-)
だからここに配列によって与えられた空間を満たすために異なる色の立方体をプロットする方法があります(x,y,z)
。
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm
import matplotlib.colorbar
import matplotlib.colors
def cuboid_data(center, size=(1,1,1)):
# code taken from
# http://stackoverflow.com/questions/30715083/python-plotting-a-wireframe-3d-cuboid?noredirect=1&lq=1
# suppose axis direction: x: to left; y: to inside; z: to upper
# get the (left, outside, bottom) point
o = [a - b / 2 for a, b in Zip(center, size)]
# get the length, width, and height
l, w, h = size
x = [[o[0], o[0] + l, o[0] + l, o[0], o[0]], # x coordinate of points in bottom surface
[o[0], o[0] + l, o[0] + l, o[0], o[0]], # x coordinate of points in upper surface
[o[0], o[0] + l, o[0] + l, o[0], o[0]], # x coordinate of points in outside surface
[o[0], o[0] + l, o[0] + l, o[0], o[0]]] # x coordinate of points in inside surface
y = [[o[1], o[1], o[1] + w, o[1] + w, o[1]], # y coordinate of points in bottom surface
[o[1], o[1], o[1] + w, o[1] + w, o[1]], # y coordinate of points in upper surface
[o[1], o[1], o[1], o[1], o[1]], # y coordinate of points in outside surface
[o[1] + w, o[1] + w, o[1] + w, o[1] + w, o[1] + w]] # y coordinate of points in inside surface
z = [[o[2], o[2], o[2], o[2], o[2]], # z coordinate of points in bottom surface
[o[2] + h, o[2] + h, o[2] + h, o[2] + h, o[2] + h], # z coordinate of points in upper surface
[o[2], o[2], o[2] + h, o[2] + h, o[2]], # z coordinate of points in outside surface
[o[2], o[2], o[2] + h, o[2] + h, o[2]]] # z coordinate of points in inside surface
return x, y, z
def plotCubeAt(pos=(0,0,0), c="b", alpha=0.1, ax=None):
# Plotting N cube elements at position pos
if ax !=None:
X, Y, Z = cuboid_data( (pos[0],pos[1],pos[2]) )
ax.plot_surface(X, Y, Z, color=c, rstride=1, cstride=1, alpha=0.1)
def plotMatrix(ax, x, y, z, data, cmap="jet", cax=None, alpha=0.1):
# plot a Matrix
norm = matplotlib.colors.Normalize(vmin=data.min(), vmax=data.max())
colors = lambda i,j,k : matplotlib.cm.ScalarMappable(norm=norm,cmap = cmap).to_rgba(data[i,j,k])
for i, xi in enumerate(x):
for j, yi in enumerate(y):
for k, zi, in enumerate(z):
plotCubeAt(pos=(xi, yi, zi), c=colors(i,j,k), alpha=alpha, ax=ax)
if cax !=None:
cbar = matplotlib.colorbar.ColorbarBase(cax, cmap=cmap,
norm=norm,
orientation='vertical')
cbar.set_ticks(np.unique(data))
# set the colorbar transparent as well
cbar.solids.set(alpha=alpha)
if __name__ == '__main__':
# x and y and z coordinates
x = np.array(range(10))
y = np.array(range(10,15))
z = np.array(range(15,20))
data_value = np.random.randint(1,4, size=(len(x), len(y), len(z)) )
print data_value.shape
fig = plt.figure(figsize=(10,4))
ax = fig.add_axes([0.1, 0.1, 0.7, 0.8], projection='3d')
ax_cb = fig.add_axes([0.8, 0.3, 0.05, 0.45])
ax.set_aspect('equal')
plotMatrix(ax, x, y, z, data_value, cmap="jet", cax = ax_cb)
plt.savefig(__file__+".png")
plt.show()
ここで何も見るのは本当に難しいと思いますが、それは好みの問題かもしれません。
質問を誤解しているようです。したがって、以下は質問に答えません。ここでは、他の人が利用できるように、以下のコメントを残すために、ここを離れます。
おもう - plot_surface
は、指定されたタスクには問題ありません。
基本的に、ポイントによって与えられた形状で表面をプロットしますX,Y,Z
を3Dで表示し、data_values
以下のコードに示すように。
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.gca(projection='3d')
# as plot_surface needs 2D arrays as input
x = np.arange(10)
y = np.array(range(10,15))
# we make a meshgrid from the x,y data
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))
# data_value shall be represented by color
data_value = np.random.Rand(len(y), len(x))
# map the data to rgba values from a colormap
colors = cm.ScalarMappable(cmap = "viridis").to_rgba(data_value)
# plot_surface with points X,Y,Z and data_value as colors
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, facecolors=colors,
linewidth=0, antialiased=True)
plt.show()