これは私が思い付くことができる最高のアルゴリズムです。
def get_primes(n):
numbers = set(range(n, 1, -1))
primes = []
while numbers:
p = numbers.pop()
primes.append(p)
numbers.difference_update(set(range(p*2, n+1, p)))
return primes
>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import get_primes').timeit(1)
1.1499958793645562
もっと速くすることはできますか?
このコードには欠陥があります。numbers
は順序付けされていないセットなので、numbers.pop()
がセットから最小の番号を削除するという保証はありません。それにもかかわらず、それはいくつかの入力数に対して(少なくとも私にとっては)働きます:
>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True
Warning:timeit
の結果は、ハードウェアやPythonのバージョンの違いにより異なる場合があります。
以下は、いくつかの実装を比較するスクリプトです。
Sieve_wheel_30を私の注意に導いてくれた stephan に感謝します。クレジットは Robert William Hanks primesfrom2to、primesfrom3to、rwh_primes、rwh_primes1、およびrwh_primes2については==になります。
テストされた普通のPythonメソッドのうち、n = 1000000の場合、with psyco、rwh_primes1が最も速くテストされました。
+---------------------+-------+
| Method | ms |
+---------------------+-------+
| rwh_primes1 | 43.0 |
| sieveOfAtkin | 46.4 |
| rwh_primes | 57.4 |
| sieve_wheel_30 | 63.0 |
| rwh_primes2 | 67.8 |
| sieveOfEratosthenes | 147.0 |
| ambi_sieve_plain | 152.0 |
| sundaram3 | 194.0 |
+---------------------+-------+
テストされた普通のPythonメソッドのうち、n = 1000000に対してpsycoなし、rwh_primes2が最速でした。
+---------------------+-------+
| Method | ms |
+---------------------+-------+
| rwh_primes2 | 68.1 |
| rwh_primes1 | 93.7 |
| rwh_primes | 94.6 |
| sieve_wheel_30 | 97.4 |
| sieveOfEratosthenes | 178.0 |
| ambi_sieve_plain | 286.0 |
| sieveOfAtkin | 314.0 |
| sundaram3 | 416.0 |
+---------------------+-------+
テストされたすべてのメソッドのうち、n = 1000000の場合に numpy を許可すること--- primesfrom2toが最もテストされたものです。
+---------------------+-------+
| Method | ms |
+---------------------+-------+
| primesfrom2to | 15.9 |
| primesfrom3to | 18.4 |
| ambi_sieve | 29.3 |
+---------------------+-------+
タイミングは以下のコマンドを使用して測定されました。
python -mtimeit -s"import primes" "primes.{method}(1000000)"
{method}
は各メソッド名に置き換えられます。
primes.py:
#!/usr/bin/env python
import psyco; psyco.full()
from math import sqrt, ceil
import numpy as np
def rwh_primes(n):
# https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
""" Returns a list of primes < n """
sieve = [True] * n
for i in xrange(3,int(n**0.5)+1,2):
if sieve[i]:
sieve[i*i::2*i]=[False]*((n-i*i-1)/(2*i)+1)
return [2] + [i for i in xrange(3,n,2) if sieve[i]]
def rwh_primes1(n):
# https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
""" Returns a list of primes < n """
sieve = [True] * (n/2)
for i in xrange(3,int(n**0.5)+1,2):
if sieve[i/2]:
sieve[i*i/2::i] = [False] * ((n-i*i-1)/(2*i)+1)
return [2] + [2*i+1 for i in xrange(1,n/2) if sieve[i]]
def rwh_primes2(n):
# https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
""" Input n>=6, Returns a list of primes, 2 <= p < n """
correction = (n%6>1)
n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]
sieve = [True] * (n/3)
sieve[0] = False
for i in xrange(int(n**0.5)/3+1):
if sieve[i]:
k=3*i+1|1
sieve[ ((k*k)/3) ::2*k]=[False]*((n/6-(k*k)/6-1)/k+1)
sieve[(k*k+4*k-2*k*(i&1))/3::2*k]=[False]*((n/6-(k*k+4*k-2*k*(i&1))/6-1)/k+1)
return [2,3] + [3*i+1|1 for i in xrange(1,n/3-correction) if sieve[i]]
def sieve_wheel_30(N):
# http://zerovolt.com/?p=88
''' Returns a list of primes <= N using wheel criterion 2*3*5 = 30
Copyright 2009 by zerovolt.com
This code is free for non-commercial purposes, in which case you can just leave this comment as a credit for my work.
If you need this code for commercial purposes, please contact me by sending an email to: info [at] zerovolt [dot] com.'''
__smallp = ( 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,
149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311,
313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491,
499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599,
601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683,
691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887,
907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997)
wheel = (2, 3, 5)
const = 30
if N < 2:
return []
if N <= const:
pos = 0
while __smallp[pos] <= N:
pos += 1
return list(__smallp[:pos])
# make the offsets list
offsets = (7, 11, 13, 17, 19, 23, 29, 1)
# prepare the list
p = [2, 3, 5]
dim = 2 + N // const
tk1 = [True] * dim
tk7 = [True] * dim
tk11 = [True] * dim
tk13 = [True] * dim
tk17 = [True] * dim
tk19 = [True] * dim
tk23 = [True] * dim
tk29 = [True] * dim
tk1[0] = False
# help dictionary d
# d[a , b] = c ==> if I want to find the smallest useful multiple of (30*pos)+a
# on tkc, then I need the index given by the product of [(30*pos)+a][(30*pos)+b]
# in general. If b < a, I need [(30*pos)+a][(30*(pos+1))+b]
d = {}
for x in offsets:
for y in offsets:
res = (x*y) % const
if res in offsets:
d[(x, res)] = y
# another help dictionary: gives tkx calling tmptk[x]
tmptk = {1:tk1, 7:tk7, 11:tk11, 13:tk13, 17:tk17, 19:tk19, 23:tk23, 29:tk29}
pos, prime, lastadded, stop = 0, 0, 0, int(ceil(sqrt(N)))
# inner functions definition
def del_mult(tk, start, step):
for k in xrange(start, len(tk), step):
tk[k] = False
# end of inner functions definition
cpos = const * pos
while prime < stop:
# 30k + 7
if tk7[pos]:
prime = cpos + 7
p.append(prime)
lastadded = 7
for off in offsets:
tmp = d[(7, off)]
start = (pos + prime) if off == 7 else (prime * (const * (pos + 1 if tmp < 7 else 0) + tmp) )//const
del_mult(tmptk[off], start, prime)
# 30k + 11
if tk11[pos]:
prime = cpos + 11
p.append(prime)
lastadded = 11
for off in offsets:
tmp = d[(11, off)]
start = (pos + prime) if off == 11 else (prime * (const * (pos + 1 if tmp < 11 else 0) + tmp) )//const
del_mult(tmptk[off], start, prime)
# 30k + 13
if tk13[pos]:
prime = cpos + 13
p.append(prime)
lastadded = 13
for off in offsets:
tmp = d[(13, off)]
start = (pos + prime) if off == 13 else (prime * (const * (pos + 1 if tmp < 13 else 0) + tmp) )//const
del_mult(tmptk[off], start, prime)
# 30k + 17
if tk17[pos]:
prime = cpos + 17
p.append(prime)
lastadded = 17
for off in offsets:
tmp = d[(17, off)]
start = (pos + prime) if off == 17 else (prime * (const * (pos + 1 if tmp < 17 else 0) + tmp) )//const
del_mult(tmptk[off], start, prime)
# 30k + 19
if tk19[pos]:
prime = cpos + 19
p.append(prime)
lastadded = 19
for off in offsets:
tmp = d[(19, off)]
start = (pos + prime) if off == 19 else (prime * (const * (pos + 1 if tmp < 19 else 0) + tmp) )//const
del_mult(tmptk[off], start, prime)
# 30k + 23
if tk23[pos]:
prime = cpos + 23
p.append(prime)
lastadded = 23
for off in offsets:
tmp = d[(23, off)]
start = (pos + prime) if off == 23 else (prime * (const * (pos + 1 if tmp < 23 else 0) + tmp) )//const
del_mult(tmptk[off], start, prime)
# 30k + 29
if tk29[pos]:
prime = cpos + 29
p.append(prime)
lastadded = 29
for off in offsets:
tmp = d[(29, off)]
start = (pos + prime) if off == 29 else (prime * (const * (pos + 1 if tmp < 29 else 0) + tmp) )//const
del_mult(tmptk[off], start, prime)
# now we go back to top tk1, so we need to increase pos by 1
pos += 1
cpos = const * pos
# 30k + 1
if tk1[pos]:
prime = cpos + 1
p.append(prime)
lastadded = 1
for off in offsets:
tmp = d[(1, off)]
start = (pos + prime) if off == 1 else (prime * (const * pos + tmp) )//const
del_mult(tmptk[off], start, prime)
# time to add remaining primes
# if lastadded == 1, remove last element and start adding them from tk1
# this way we don't need an "if" within the last while
if lastadded == 1:
p.pop()
# now complete for every other possible prime
while pos < len(tk1):
cpos = const * pos
if tk1[pos]: p.append(cpos + 1)
if tk7[pos]: p.append(cpos + 7)
if tk11[pos]: p.append(cpos + 11)
if tk13[pos]: p.append(cpos + 13)
if tk17[pos]: p.append(cpos + 17)
if tk19[pos]: p.append(cpos + 19)
if tk23[pos]: p.append(cpos + 23)
if tk29[pos]: p.append(cpos + 29)
pos += 1
# remove exceeding if present
pos = len(p) - 1
while p[pos] > N:
pos -= 1
if pos < len(p) - 1:
del p[pos+1:]
# return p list
return p
def sieveOfEratosthenes(n):
"""sieveOfEratosthenes(n): return the list of the primes < n."""
# Code from: <[email protected]>, Nov 30 2006
# http://groups.google.com/group/comp.lang.python/msg/f1f10ced88c68c2d
if n <= 2:
return []
sieve = range(3, n, 2)
top = len(sieve)
for si in sieve:
if si:
bottom = (si*si - 3) // 2
if bottom >= top:
break
sieve[bottom::si] = [0] * -((bottom - top) // si)
return [2] + [el for el in sieve if el]
def sieveOfAtkin(end):
"""sieveOfAtkin(end): return a list of all the prime numbers <end
using the Sieve of Atkin."""
# Code by Steve Krenzel, <[email protected]>, improved
# Code: https://web.archive.org/web/20080324064651/http://krenzel.info/?p=83
# Info: http://en.wikipedia.org/wiki/Sieve_of_Atkin
assert end > 0
lng = ((end-1) // 2)
sieve = [False] * (lng + 1)
x_max, x2, xd = int(sqrt((end-1)/4.0)), 0, 4
for xd in xrange(4, 8*x_max + 2, 8):
x2 += xd
y_max = int(sqrt(end-x2))
n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1
if not (n & 1):
n -= n_diff
n_diff -= 2
for d in xrange((n_diff - 1) << 1, -1, -8):
m = n % 12
if m == 1 or m == 5:
m = n >> 1
sieve[m] = not sieve[m]
n -= d
x_max, x2, xd = int(sqrt((end-1) / 3.0)), 0, 3
for xd in xrange(3, 6 * x_max + 2, 6):
x2 += xd
y_max = int(sqrt(end-x2))
n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1
if not(n & 1):
n -= n_diff
n_diff -= 2
for d in xrange((n_diff - 1) << 1, -1, -8):
if n % 12 == 7:
m = n >> 1
sieve[m] = not sieve[m]
n -= d
x_max, y_min, x2, xd = int((2 + sqrt(4-8*(1-end)))/4), -1, 0, 3
for x in xrange(1, x_max + 1):
x2 += xd
xd += 6
if x2 >= end: y_min = (((int(ceil(sqrt(x2 - end))) - 1) << 1) - 2) << 1
n, n_diff = ((x*x + x) << 1) - 1, (((x-1) << 1) - 2) << 1
for d in xrange(n_diff, y_min, -8):
if n % 12 == 11:
m = n >> 1
sieve[m] = not sieve[m]
n += d
primes = [2, 3]
if end <= 3:
return primes[:max(0,end-2)]
for n in xrange(5 >> 1, (int(sqrt(end))+1) >> 1):
if sieve[n]:
primes.append((n << 1) + 1)
aux = (n << 1) + 1
aux *= aux
for k in xrange(aux, end, 2 * aux):
sieve[k >> 1] = False
s = int(sqrt(end)) + 1
if s % 2 == 0:
s += 1
primes.extend([i for i in xrange(s, end, 2) if sieve[i >> 1]])
return primes
def ambi_sieve_plain(n):
s = range(3, n, 2)
for m in xrange(3, int(n**0.5)+1, 2):
if s[(m-3)/2]:
for t in xrange((m*m-3)/2,(n>>1)-1,m):
s[t]=0
return [2]+[t for t in s if t>0]
def sundaram3(max_n):
# https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/2073279#2073279
numbers = range(3, max_n+1, 2)
half = (max_n)//2
initial = 4
for step in xrange(3, max_n+1, 2):
for i in xrange(initial, half, step):
numbers[i-1] = 0
initial += 2*(step+1)
if initial > half:
return [2] + filter(None, numbers)
################################################################################
# Using Numpy:
def ambi_sieve(n):
# http://tommih.blogspot.com/2009/04/fast-prime-number-generator.html
s = np.arange(3, n, 2)
for m in xrange(3, int(n ** 0.5)+1, 2):
if s[(m-3)/2]:
s[(m*m-3)/2::m]=0
return np.r_[2, s[s>0]]
def primesfrom3to(n):
# https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
""" Returns a array of primes, p < n """
assert n>=2
sieve = np.ones(n/2, dtype=np.bool)
for i in xrange(3,int(n**0.5)+1,2):
if sieve[i/2]:
sieve[i*i/2::i] = False
return np.r_[2, 2*np.nonzero(sieve)[0][1::]+1]
def primesfrom2to(n):
# https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
""" Input n>=6, Returns a array of primes, 2 <= p < n """
sieve = np.ones(n/3 + (n%6==2), dtype=np.bool)
sieve[0] = False
for i in xrange(int(n**0.5)/3+1):
if sieve[i]:
k=3*i+1|1
sieve[ ((k*k)/3) ::2*k] = False
sieve[(k*k+4*k-2*k*(i&1))/3::2*k] = False
return np.r_[2,3,((3*np.nonzero(sieve)[0]+1)|1)]
if __name__=='__main__':
import itertools
import sys
def test(f1,f2,num):
print('Testing {f1} and {f2} return same results'.format(
f1=f1.func_name,
f2=f2.func_name))
if not all([a==b for a,b in itertools.izip_longest(f1(num),f2(num))]):
sys.exit("Error: %s(%s) != %s(%s)"%(f1.func_name,num,f2.func_name,num))
n=1000000
test(sieveOfAtkin,sieveOfEratosthenes,n)
test(sieveOfAtkin,ambi_sieve,n)
test(sieveOfAtkin,ambi_sieve_plain,n)
test(sieveOfAtkin,sundaram3,n)
test(sieveOfAtkin,sieve_wheel_30,n)
test(sieveOfAtkin,primesfrom3to,n)
test(sieveOfAtkin,primesfrom2to,n)
test(sieveOfAtkin,rwh_primes,n)
test(sieveOfAtkin,rwh_primes1,n)
test(sieveOfAtkin,rwh_primes2,n)
スクリプトを実行すると、すべての実装で同じ結果が得られることがテストされます。
より速く、よりメモリ的に純粋なPythonコード:
def primes(n):
""" Returns a list of primes < n """
sieve = [True] * n
for i in range(3,int(n**0.5)+1,2):
if sieve[i]:
sieve[i*i::2*i]=[False]*((n-i*i-1)//(2*i)+1)
return [2] + [i for i in range(3,n,2) if sieve[i]]
またはハーフシーブから始める
def primes1(n):
""" Returns a list of primes < n """
sieve = [True] * (n//2)
for i in range(3,int(n**0.5)+1,2):
if sieve[i//2]:
sieve[i*i//2::i] = [False] * ((n-i*i-1)//(2*i)+1)
return [2] + [2*i+1 for i in range(1,n//2) if sieve[i]]
より速く、よりメモリ的に派手なコード:
import numpy
def primesfrom3to(n):
""" Returns a array of primes, 3 <= p < n """
sieve = numpy.ones(n//2, dtype=numpy.bool)
for i in range(3,int(n**0.5)+1,2):
if sieve[i//2]:
sieve[i*i//2::i] = False
return 2*numpy.nonzero(sieve)[0][1::]+1
ふるいの三分の一から始まるより速い変化:
import numpy
def primesfrom2to(n):
""" Input n>=6, Returns a array of primes, 2 <= p < n """
sieve = numpy.ones(n//3 + (n%6==2), dtype=numpy.bool)
for i in range(1,int(n**0.5)//3+1):
if sieve[i]:
k=3*i+1|1
sieve[ k*k//3 ::2*k] = False
sieve[k*(k-2*(i&1)+4)//3::2*k] = False
return numpy.r_[2,3,((3*numpy.nonzero(sieve)[0][1:]+1)|1)]
上記のコードの(コードを書くのが難しい)純粋なpythonバージョンは次のようになります。
def primes2(n):
""" Input n>=6, Returns a list of primes, 2 <= p < n """
n, correction = n-n%6+6, 2-(n%6>1)
sieve = [True] * (n//3)
for i in range(1,int(n**0.5)//3+1):
if sieve[i]:
k=3*i+1|1
sieve[ k*k//3 ::2*k] = [False] * ((n//6-k*k//6-1)//k+1)
sieve[k*(k-2*(i&1)+4)//3::2*k] = [False] * ((n//6-k*(k-2*(i&1)+4)//6-1)//k+1)
return [2,3] + [3*i+1|1 for i in range(1,n//3-correction) if sieve[i]]
残念ながら、pure-pythonは代入を行うためのより単純でより速くてっぺんな方法を採用していません、そしてlen()
のようにループの中で[False]*len(sieve[((k*k)//3)::2*k])
を呼び出すのは遅すぎます。だから私はインプットを修正する(そしてより多くの数学を避ける)そして極端な(そして痛みを伴う)数学の魔法をするために即興しなければならなかった。
個人的には、numpy(広く使われている)がPython標準ライブラリの一部ではないこと、そして構文と速度の向上がPython開発者によって完全に見過ごされているように思われることは残念です。
Python Cookbookからのかなりきれいなサンプルがあります ここ - そのURLで提案されている最も速いバージョンは次のとおりです。
import itertools
def erat2( ):
D = { }
yield 2
for q in itertools.islice(itertools.count(3), 0, None, 2):
p = D.pop(q, None)
if p is None:
D[q*q] = q
yield q
else:
x = p + q
while x in D or not (x&1):
x += p
D[x] = p
だからそれは与えるだろう
def get_primes_erat(n):
return list(itertools.takewhile(lambda p: p<n, erat2()))
Pri.pyのこのコードを使って(私がしたいように)シェルプロンプトで測定すると、次のようになります。
$ python2.5 -mtimeit -s'import pri' 'pri.get_primes(1000000)'
10 loops, best of 3: 1.69 sec per loop
$ python2.5 -mtimeit -s'import pri' 'pri.get_primes_erat(1000000)'
10 loops, best of 3: 673 msec per loop
そのため、Cookbookソリューションは2倍以上速くなっているようです。
Sundaram's Sieve を使って、私は純粋なPythonの記録を破ったと思う。
def sundaram3(max_n):
numbers = range(3, max_n+1, 2)
half = (max_n)//2
initial = 4
for step in xrange(3, max_n+1, 2):
for i in xrange(initial, half, step):
numbers[i-1] = 0
initial += 2*(step+1)
if initial > half:
return [2] + filter(None, numbers)
比較:
C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.get_primes_erat(1000000)"
10 loops, best of 3: 710 msec per loop
C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.daniel_sieve_2(1000000)"
10 loops, best of 3: 435 msec per loop
C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.sundaram3(1000000)"
10 loops, best of 3: 327 msec per loop
アルゴリズムは高速ですが、深刻な問題があります。
>>> sorted(get_primes(530))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163,
167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251,
257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349,
353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443,
449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 527, 529]
>>> 17*31
527
>>> 23*23
529
あなたはnumbers.pop()
がセット内の最小の数を返すと仮定しますが、これは全く保証されていません。集合は順不同で、pop()
は 任意 要素を削除して返すので、残りの要素から次の素数を選ぶのには使えません。数字です。
十分に大きいNを持つ本当に最速の解決法は 素数の計算済みリスト をダウンロードすることです、それをタプルとして保存そして、次のようにします。
for pos,i in enumerate(primes):
if i > N:
print primes[:pos]
N > primes[-1]
のみの場合は、さらに素数を計算して新しいリストをコードに保存するので、次回は同じくらい高速になります。
常に箱の外側を考えてください。
車輪の再発明を望まないのであれば、シンボリック数学ライブラリーをインストールすることができます sympy (はい、それはPython 3互換です)
pip install sympy
そして primerange 関数を使ってください
from sympy import sieve
primes = list(sieve.primerange(1, 10**6))
あなたがitertoolsを受け入れるがぞんざいではない場合、これは私のマシン上で約2倍の速度で実行されるPython 3用のrwh_primes2の適応です。唯一の実質的な変更は、ブール値に対してリストの代わりにバイト配列を使用し、そして最終的なリストを構築するためにリスト内包表記の代わりに圧縮を使用することです。 (できればmoarningsunのようなコメントとしてこれを付け加えたい。)
import itertools
izip = itertools.Zip_longest
chain = itertools.chain.from_iterable
compress = itertools.compress
def rwh_primes2_python3(n):
""" Input n>=6, Returns a list of primes, 2 <= p < n """
zero = bytearray([False])
size = n//3 + (n % 6 == 2)
sieve = bytearray([True]) * size
sieve[0] = False
for i in range(int(n**0.5)//3+1):
if sieve[i]:
k=3*i+1|1
start = (k*k+4*k-2*k*(i&1))//3
sieve[(k*k)//3::2*k]=zero*((size - (k*k)//3 - 1) // (2 * k) + 1)
sieve[ start ::2*k]=zero*((size - start - 1) // (2 * k) + 1)
ans = [2,3]
poss = chain(izip(*[range(i, n, 6) for i in (1,5)]))
ans.extend(compress(poss, sieve))
return ans
比較
>>> timeit.timeit('primes.rwh_primes2(10**6)', setup='import primes', number=1)
0.0652179726976101
>>> timeit.timeit('primes.rwh_primes2_python3(10**6)', setup='import primes', number=1)
0.03267321276325674
そして
>>> timeit.timeit('primes.rwh_primes2(10**8)', setup='import primes', number=1)
6.394284538007014
>>> timeit.timeit('primes.rwh_primes2_python3(10**8)', setup='import primes', number=1)
3.833829450302801
あなた自身の素数発見コードを書くことは有益ですが、手元に高速で信頼できるライブラリを持つこともまた役に立ちます。私は C++ライブラリprimesieve のラッパーを書いた primesieve-python
試してみてくださいpip install primesieve
import primesieve
primes = primesieve.generate_primes(10**8)
速度を比較してみたいのですが。
これは最も速い関数の1つの2つの更新された(純粋なPython 3.6)バージョンです、
from itertools import compress
def rwh_primes1v1(n):
""" Returns a list of primes < n for n > 2 """
sieve = bytearray([True]) * (n//2)
for i in range(3,int(n**0.5)+1,2):
if sieve[i//2]:
sieve[i*i//2::i] = bytearray((n-i*i-1)//(2*i)+1)
return [2,*compress(range(3,n,2), sieve[1:])]
def rwh_primes1v2(n):
""" Returns a list of primes < n for n > 2 """
sieve = bytearray([True]) * (n//2+1)
for i in range(1,int(n**0.5)//2+1):
if sieve[i]:
sieve[2*i*(i+1)::2*i+1] = bytearray((n//2-2*i*(i+1))//(2*i+1)+1)
return [2,*compress(range(3,n,2), sieve[1:])]
これが私がPythonで素数を生成するために通常使うコードです:
$ python -mtimeit -s'import sieve' 'sieve.sieve(1000000)'
10 loops, best of 3: 445 msec per loop
$ cat sieve.py
from math import sqrt
def sieve(size):
prime=[True]*size
rng=xrange
limit=int(sqrt(size))
for i in rng(3,limit+1,+2):
if prime[i]:
prime[i*i::+i]=[False]*len(prime[i*i::+i])
return [2]+[i for i in rng(3,size,+2) if prime[i]]
if __name__=='__main__':
print sieve(100)
ここに掲載されているより高速なソリューションと競合することはできませんが、少なくとも純粋なPythonです。
この質問を投稿していただきありがとうございます。今日は本当にたくさんのことを学びました。
N <9,080,191を仮定したミラーラビンの素数性検定の決定論的実装
import sys
import random
def miller_rabin_pass(a, n):
d = n - 1
s = 0
while d % 2 == 0:
d >>= 1
s += 1
a_to_power = pow(a, d, n)
if a_to_power == 1:
return True
for i in xrange(s-1):
if a_to_power == n - 1:
return True
a_to_power = (a_to_power * a_to_power) % n
return a_to_power == n - 1
def miller_rabin(n):
for a in [2, 3, 37, 73]:
if not miller_rabin_pass(a, n):
return False
return True
n = int(sys.argv[1])
primes = [2]
for p in range(3,n,2):
if miller_rabin(p):
primes.append(p)
print len(primes)
ウィキペディアの記事によると( http://en.wikipedia.org/wiki/Miller–Rabin_primality_test )、N = 9,080,191でa = 2,3,37、73であれば十分かどうかを判断するのに十分です。 Nは複合であるかどうか。
そして私はここで見つけたオリジナルのMiller-Rabinのテストの確率的な実装からソースコードを修正しました: http://en.literateprograms.org/Miller-Rabin_primality_test_(Python)
Nを制御できる場合、すべての素数をリストする最も速い方法はそれらを事前計算することです。真剣に。事前計算は見落とされがちな最適化です。
私はいくつかをテストしました nutbuの関数 、私は何百万もの数を掛けて計算しました
勝者はnumpyライブラリを使う機能です。
注:メモリ使用率テストをするのも面白いでしょう:)
サンプルコード
#!/usr/bin/env python
import lib
import timeit
import sys
import math
import datetime
import prettyplotlib as ppl
import numpy as np
import matplotlib.pyplot as plt
from prettyplotlib import brewer2mpl
primenumbers_gen = [
'sieveOfEratosthenes',
'ambi_sieve',
'ambi_sieve_plain',
'sundaram3',
'sieve_wheel_30',
'primesfrom3to',
'primesfrom2to',
'rwh_primes',
'rwh_primes1',
'rwh_primes2',
]
def human_format(num):
# https://stackoverflow.com/questions/579310/formatting-long-numbers-as-strings-in-python?answertab=active#tab-top
magnitude = 0
while abs(num) >= 1000:
magnitude += 1
num /= 1000.0
# add more suffixes if you need them
return '%.2f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude])
if __name__=='__main__':
# Vars
n = 10000000 # number itereration generator
nbcol = 5 # For decompose prime number generator
nb_benchloop = 3 # Eliminate false positive value during the test (bench average time)
datetimeformat = '%Y-%m-%d %H:%M:%S.%f'
config = 'from __main__ import n; import lib'
primenumbers_gen = {
'sieveOfEratosthenes': {'color': 'b'},
'ambi_sieve': {'color': 'b'},
'ambi_sieve_plain': {'color': 'b'},
'sundaram3': {'color': 'b'},
'sieve_wheel_30': {'color': 'b'},
# # # 'primesfrom2to': {'color': 'b'},
'primesfrom3to': {'color': 'b'},
# 'rwh_primes': {'color': 'b'},
# 'rwh_primes1': {'color': 'b'},
'rwh_primes2': {'color': 'b'},
}
# Get n in command line
if len(sys.argv)>1:
n = int(sys.argv[1])
step = int(math.ceil(n / float(nbcol)))
nbs = np.array([i * step for i in range(1, int(nbcol) + 1)])
set2 = brewer2mpl.get_map('Paired', 'qualitative', 12).mpl_colors
print datetime.datetime.now().strftime(datetimeformat)
print("Compute prime number to %(n)s" % locals())
print("")
results = dict()
for pgen in primenumbers_gen:
results[pgen] = dict()
benchtimes = list()
for n in nbs:
t = timeit.Timer("lib.%(pgen)s(n)" % locals(), setup=config)
execute_times = t.repeat(repeat=nb_benchloop,number=1)
benchtime = np.mean(execute_times)
benchtimes.append(benchtime)
results[pgen] = {'benchtimes':np.array(benchtimes)}
fig, ax = plt.subplots(1)
plt.ylabel('Computation time (in second)')
plt.xlabel('Numbers computed')
i = 0
for pgen in primenumbers_gen:
bench = results[pgen]['benchtimes']
avgs = np.divide(bench,nbs)
avg = np.average(bench, weights=nbs)
# Compute linear regression
A = np.vstack([nbs, np.ones(len(nbs))]).T
a, b = np.linalg.lstsq(A, nbs*avgs)[0]
# Plot
i += 1
#label="%(pgen)s" % locals()
#ppl.plot(nbs, nbs*avgs, label=label, lw=1, linestyle='--', color=set2[i % 12])
label="%(pgen)s avg" % locals()
ppl.plot(nbs, a * nbs + b, label=label, lw=2, color=set2[i % 12])
print datetime.datetime.now().strftime(datetimeformat)
ppl.legend(ax, loc='upper left', ncol=4)
# Change x axis label
ax.get_xaxis().get_major_formatter().set_scientific(False)
fig.canvas.draw()
labels = [human_format(int(item.get_text())) for item in ax.get_xticklabels()]
ax.set_xticklabels(labels)
ax = plt.gca()
plt.show()
Numpyを使ったハーフシーブのわずかに異なる実装:
import math import numpy def prime6(upto): primes = numpy.range(3、最大+ 1,2) isprime素数の因数の場合、= numpy.ones((upto-1)/ 2、dtype = bool)[:____]::isprime [(factor-) 2)/ 2]:isprime [(factor * 3-2)/ 2:(up-1)/ 2:factor] = 0 numpy.insert(primes [isprime]、0,2)を返します。 ]
誰かが他のタイミングとこれを比較することができますか?私のマシンでは、他のNumpyハーフシーブとかなり同等のようです。
最速のコードでは、でこぼこの解決策が最善です。しかし、純粋に学術的な理由から、私は純粋なpythonバージョンを掲載しています。これは、上記のCookbookバージョンよりも50%短い速さです。リスト全体をメモリに作成しているので、すべてを保持するのに十分なスペースが必要ですが、かなり拡大縮小されているようです。
def daniel_sieve_2(maxNumber):
"""
Given a number, returns all numbers less than or equal to
that number which are prime.
"""
allNumbers = range(3, maxNumber+1, 2)
for mIndex, number in enumerate(xrange(3, maxNumber+1, 2)):
if allNumbers[mIndex] == 0:
continue
# now set all multiples to 0
for index in xrange(mIndex+number, (maxNumber-3)/2+1, number):
allNumbers[index] = 0
return [2] + filter(lambda n: n!=0, allNumbers)
そしてその結果:
>>>mine = timeit.Timer("daniel_sieve_2(1000000)",
... "from sieves import daniel_sieve_2")
>>>prev = timeit.Timer("get_primes_erat(1000000)",
... "from sieves import get_primes_erat")
>>>print "Mine: {0:0.4f} ms".format(min(mine.repeat(3, 1))*1000)
Mine: 428.9446 ms
>>>print "Previous Best {0:0.4f} ms".format(min(prev.repeat(3, 1))*1000)
Previous Best 621.3581 ms
Python 3の場合
def rwh_primes2(n):
correction = (n%6>1)
n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]
sieve = [True] * (n//3)
sieve[0] = False
for i in range(int(n**0.5)//3+1):
if sieve[i]:
k=3*i+1|1
sieve[ ((k*k)//3) ::2*k]=[False]*((n//6-(k*k)//6-1)//k+1)
sieve[(k*k+4*k-2*k*(i&1))//3::2*k]=[False]*((n//6-(k*k+4*k-2*k*(i&1))//6-1)//k+1)
return [2,3] + [3*i+1|1 for i in range(1,n//3-correction) if sieve[i]]
それはすべて書かれテストされています。そのため、ホイールを作り直す必要はありません。
python -m timeit -r10 -s"from sympy import sieve" "primes = list(sieve.primerange(1, 10**6))"
記録を破る12.2ミリ秒!
10 loops, best of 10: 12.2 msec per loop
これで十分でない場合は、PyPyを試すことができます。
pypy -m timeit -r10 -s"from sympy import sieve" "primes = list(sieve.primerange(1, 10**6))"
その結果、
10 loops, best of 10: 2.03 msec per loop
247の賛成票を使った答えは、15.9ミリ秒のリストです。これを比較!
私は競争が数年間閉鎖されることを知っています。 …
それにもかかわらず、これは純粋なパイソンプライムシーブに対する私の提案です。それにもかかわらず、実際にはN <10 ^ 9では@Robert William Hanksの優れた解法rwh_primes2とrwh_primes1よりも遅くなります。 1.5 * 10 ^ 8以上のctypes.c_ushortふるい配列を使用することによって、それはどういうわけかメモリ限界に適応します。
10 ^ 6
$ python -mtimeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp.primeSieveSeq(1000000)" 10ループ、3/46.7ミリ秒(ループあたり)
比較するには:$ python -mtimeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes1(1000000)" 10個のループ、最適な1ループあたり3:43.2ミリ秒$ python -m timeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp" "primeSieveSpeedComp" (1000000) "10ループ、最高3:ループあたり34.5ミリ秒
10 ^ 7
$ python -mtimeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp.primeSieveSeq(10000000)" 10ループ、最高3:ループあたり530ミリ秒
比較するには:$ python -mtimeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes1(10000000)" 10ループ、3〜494ミリ秒/ループで比較:$ python -m timeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp" "primeSieveSpeedComp" (10000000) "10ループ、最高3:375ミリ秒/ループ
10 ^ 8
$ python -mtimeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp.primeSieveSeq(100000000)" 10ループ、3/5.55ループ/ループ
比較するには:$ python -mtimeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes1(100000000)"比較するために、1ループあたり10ループ、3:5.33秒が最適です。$ python -m timeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp" (100000000) "10ループ、最高3:ループあたり3.95秒
10 ^ 9
$ python -mtimeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp.primeSieveSeq(1000000000)" 10ループ、3から最適:61.2 1ループあたりの秒数
$ python -mtimeit -n 3 -s "import primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes1(1000000000)" 3つのループ、最良の3:97.8 1ループあたりの秒数
$ python -m timeit -s "import primeSieveSpeedComp" "primeSieveSpeedComp.rwh_primes2(1000000000)" 10ループ、1ループあたり3:41.9秒
このテストをレビューするには、以下のコードをubuntus primeSieveSpeedCompにコピーしてください。
def primeSieveSeq(MAX_Int):
if MAX_Int > 5*10**8:
import ctypes
int16Array = ctypes.c_ushort * (MAX_Int >> 1)
sieve = int16Array()
#print 'uses ctypes "unsigned short int Array"'
else:
sieve = (MAX_Int >> 1) * [False]
#print 'uses python list() of long long int'
if MAX_Int < 10**8:
sieve[4::3] = [True]*((MAX_Int - 8)/6+1)
sieve[12::5] = [True]*((MAX_Int - 24)/10+1)
r = [2, 3, 5]
n = 0
for i in xrange(int(MAX_Int**0.5)/30+1):
n += 3
if not sieve[n]:
n2 = (n << 1) + 1
r.append(n2)
n2q = (n2**2) >> 1
sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
n += 2
if not sieve[n]:
n2 = (n << 1) + 1
r.append(n2)
n2q = (n2**2) >> 1
sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
n += 1
if not sieve[n]:
n2 = (n << 1) + 1
r.append(n2)
n2q = (n2**2) >> 1
sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
n += 2
if not sieve[n]:
n2 = (n << 1) + 1
r.append(n2)
n2q = (n2**2) >> 1
sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
n += 1
if not sieve[n]:
n2 = (n << 1) + 1
r.append(n2)
n2q = (n2**2) >> 1
sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
n += 2
if not sieve[n]:
n2 = (n << 1) + 1
r.append(n2)
n2q = (n2**2) >> 1
sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
n += 3
if not sieve[n]:
n2 = (n << 1) + 1
r.append(n2)
n2q = (n2**2) >> 1
sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
n += 1
if not sieve[n]:
n2 = (n << 1) + 1
r.append(n2)
n2q = (n2**2) >> 1
sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
if MAX_Int < 10**8:
return [2, 3, 5]+[(p << 1) + 1 for p in [n for n in xrange(3, MAX_Int >> 1) if not sieve[n]]]
n = n >> 1
try:
for i in xrange((MAX_Int-2*n)/30 + 1):
n += 3
if not sieve[n]:
r.append((n << 1) + 1)
n += 2
if not sieve[n]:
r.append((n << 1) + 1)
n += 1
if not sieve[n]:
r.append((n << 1) + 1)
n += 2
if not sieve[n]:
r.append((n << 1) + 1)
n += 1
if not sieve[n]:
r.append((n << 1) + 1)
n += 2
if not sieve[n]:
r.append((n << 1) + 1)
n += 3
if not sieve[n]:
r.append((n << 1) + 1)
n += 1
if not sieve[n]:
r.append((n << 1) + 1)
except:
pass
return r
初めてPythonを使うので、私がこれで使う方法のいくつかは少し面倒に思えるかもしれません。私はちょうど私のc ++コードを直接pythonに変換しました、そして、これは私が持っているものです(pythonでは少し遅いが)
#!/usr/bin/env python
import time
def GetPrimes(n):
Sieve = [1 for x in xrange(n)]
Done = False
w = 3
while not Done:
for q in xrange (3, n, 2):
Prod = w*q
if Prod < n:
Sieve[Prod] = 0
else:
break
if w > (n/2):
Done = True
w += 2
return Sieve
start = time.clock()
d = 10000000
Primes = GetPrimes(d)
count = 1 #This is for 2
for x in xrange (3, d, 2):
if Primes[x]:
count+=1
elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"
pythonw Primes.py
12.799119秒で664579の素数が見つかりました!
#!/usr/bin/env python
import time
def GetPrimes2(n):
Sieve = [1 for x in xrange(n)]
for q in xrange (3, n, 2):
k = q
for y in xrange(k*3, n, k*2):
Sieve[y] = 0
return Sieve
start = time.clock()
d = 10000000
Primes = GetPrimes2(d)
count = 1 #This is for 2
for x in xrange (3, d, 2):
if Primes[x]:
count+=1
elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"
pythonw Primes2.py
10.230172秒で664579素数が見つかりました!
#!/usr/bin/env python
import time
def GetPrimes3(n):
Sieve = [1 for x in xrange(n)]
for q in xrange (3, n, 2):
k = q
for y in xrange(k*k, n, k << 1):
Sieve[y] = 0
return Sieve
start = time.clock()
d = 10000000
Primes = GetPrimes3(d)
count = 1 #This is for 2
for x in xrange (3, d, 2):
if Primes[x]:
count+=1
elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"
python Primes2.py
7.113776秒で664579の素数が見つかりました!
私は、あらゆる方法の中で最速のがコードの素数をハードコードすることであると思います。
それでは、単にすべての数字が組み込まれた別のソースファイルを生成する遅いスクリプトを書いてから、実際のプログラムを実行するときにそのソースファイルをインポートしてください。
もちろん、これはコンパイル時にNの上限を知っている場合にのみ機能しますが、(ほとんど)すべてのプロジェクトオイラー問題に当てはまります。
PS:ハードワイヤード素数でソースを解析する方がそもそもそれらを計算するより遅いけれども、私は間違っているかもしれません、しかし私の知る限りではPythonはその場合、コンパイル済みの.pyc
ファイルは、Nまでのすべての素数を持つバイナリー配列を読み取るのが速くなるはずです。
これは、優れた複雑さ(長さnの配列のソートよりも低い)とベクトル化の両方を備えた、ふわふわしたバージョンのEratosthenesです。 @unutbu倍の時間と比較すると、これは46マイクロ秒のパッケージと同じくらい速く、100万未満のすべての素数を見つけることができます。
import numpy as np
def generate_primes(n):
is_prime = np.ones(n+1,dtype=bool)
is_prime[0:2] = False
for i in range(int(n**0.5)+1):
if is_prime[i]:
is_prime[i*2::i]=False
return np.where(is_prime)[0]
タイミング:
import time
for i in range(2,10):
timer =time.time()
generate_primes(10**i)
print('n = 10^',i,' time =', round(time.time()-timer,6))
>> n = 10^ 2 time = 5.6e-05
>> n = 10^ 3 time = 6.4e-05
>> n = 10^ 4 time = 0.000114
>> n = 10^ 5 time = 0.000593
>> n = 10^ 6 time = 0.00467
>> n = 10^ 7 time = 0.177758
>> n = 10^ 8 time = 1.701312
>> n = 10^ 9 time = 19.322478
私はいくつかの素数ふるいを時間をかけて集めました。私のコンピュータで最も速いのはこれです:
from time import time
# 175 ms for all the primes up to the value 10**6
def primes_sieve(limit):
a = [True] * limit
a[0] = a[1] = False
#a[2] = True
for n in xrange(4, limit, 2):
a[n] = False
root_limit = int(limit**.5)+1
for i in xrange(3,root_limit):
if a[i]:
for n in xrange(i*i, limit, 2*i):
a[n] = False
return a
LIMIT = 10**6
s=time()
primes = primes_sieve(LIMIT)
print time()-s
気にして申し訳ありませんが、erat2()にはアルゴリズムに重大な欠陥があります。
次のコンポジットを検索しながら、奇数のみをテストする必要があります。 q、pは両方とも奇数です。 q + pは偶数であり、テストする必要はありませんが、q + 2 * pは常に奇数です。これにより、whileループ条件での「if even」テストが排除され、ランタイムの約30%が節約されます。
私達がそれをしている間:Dのqの場合、優雅な 'D.pop(q、None)' get and deleteメソッドを使う代わりに: !少なくとも私のマシンでは(P3-1Ghz)。だから私はこの巧妙なアルゴリズムのこの実装をお勧めします:
def erat3( ):
from itertools import islice, count
# q is the running integer that's checked for primeness.
# yield 2 and no other even number thereafter
yield 2
D = {}
# no need to mark D[4] as we will test odd numbers only
for q in islice(count(3),0,None,2):
if q in D: # is composite
p = D[q]
del D[q]
# q is composite. p=D[q] is the first prime that
# divides it. Since we've reached q, we no longer
# need it in the map, but we'll mark the next
# multiple of its witnesses to prepare for larger
# numbers.
x = q + p+p # next odd(!) multiple
while x in D: # skip composites
x += p+p
D[x] = p
else: # is prime
# q is a new prime.
# Yield it and mark its first multiple that isn't
# already marked in previous iterations.
D[q*q] = q
yield q
これは、Pythonのリスト内包表記を使って素数を生成する(まだ最も効率的ではない)興味深いテクニックです。
noprimes = [j for i in range(2, 8) for j in range(i*2, 50, i)]
primes = [x for x in range(2, 50) if x not in noprimes]
あなたは例と正しい説明を見つけることができます ここ
私はこの質問にゆっくり答えていますが、それは楽しい演習のように思えました。私は不正行為をしている可能性がありますが、私はこの方法が最速であることを疑っていますが、それは明らかでなければなりません。ブール配列をそのインデックスのみを参照してふるいにかけ、すべてのTrue値のインデックスから素数を引き出します。モジュロは必要ありません。
import numpy as np
def ajs_primes3a(upto):
mat = np.ones((upto), dtype=bool)
mat[0] = False
mat[1] = False
mat[4::2] = False
for idx in range(3, int(upto ** 0.5)+1, 2):
mat[idx*2::idx] = False
return np.where(mat == True)[0]
ピュアPython)での最速のふるい分け:
def half_sieve(n):
"""
Returns a list of prime numbers less than `n`.
"""
if n <= 2:
return []
sieve = bytearray([True]) * (n // 2)
for i in range(3, int(n ** 0.5) + 1, 2):
if sieve[i // 2]:
sieve[i * i // 2::i] = bytearray((n - i * i - 1) // (2 * i) + 1)
primes = list(compress(range(1, n, 2), sieve))
primes[0] = 2
return primes
私はスピードとメモリのためにSieve of Eratosthenesを最適化しました。
from time import clock
import platform
def benchmark(iterations, limit):
start = clock()
for x in range(iterations):
half_sieve(limit)
end = clock() - start
print(f'{end/iterations:.4f} seconds for primes < {limit}')
if __== '__main__':
print(platform.python_version())
print(platform.platform())
print(platform.processor())
it = 10
for pw in range(4, 9):
benchmark(it, 10**pw)
出力
>>> 3.6.7
>>> Windows-10-10.0.17763-SP0
>>> Intel64 Family 6 Model 78 Stepping 3, GenuineIntel
>>> 0.0003 seconds for primes < 10000
>>> 0.0021 seconds for primes < 100000
>>> 0.0204 seconds for primes < 1000000
>>> 0.2389 seconds for primes < 10000000
>>> 2.6702 seconds for primes < 100000000
私がこれまでに試した中で最も早い方法は Pythonクックブックerat2
関数に基づいています。
import itertools as it
def erat2a( ):
D = { }
yield 2
for q in it.islice(it.count(3), 0, None, 2):
p = D.pop(q, None)
if p is None:
D[q*q] = q
yield q
else:
x = q + 2*p
while x in D:
x += 2*p
D[x] = p
スピードアップの説明については、 this answerを参照してください。
私はパーティーに遅刻するかもしれませんが、このために私自身のコードを追加しなければならないでしょう。偶数を格納する必要がないので、スペースで約n/2を使用します。また、bitarray pythonモジュールを使用し、さらに劇的にメモリ消費量を削減し、最大1,000,000,000までのすべての素数の計算を可能にします。
from bitarray import bitarray
def primes_to(n):
size = n//2
sieve = bitarray(size)
sieve.setall(1)
limit = int(n**0.5)
for i in range(1,limit):
if sieve[i]:
val = 2*i+1
sieve[(i+i*val)::val] = 0
return [2] + [2*i+1 for i, v in enumerate(sieve) if v and i > 0]
python -m timeit -n10 -s "import euler" "euler.primes_to(1000000000)"
10 loops, best of 3: 46.5 sec per loop
これは64ビット2.4GHz MAC OSX 10.8.3上で実行されました。