NLTKとパンダで用語ドキュメントマトリックスを作成しようとしています。私は次の関数を書きました:
def fnDTM_Corpus(xCorpus):
import pandas as pd
'''to create a Term Document Matrix from a NLTK Corpus'''
fd_list = []
for x in range(0, len(xCorpus.fileids())):
fd_list.append(nltk.FreqDist(xCorpus.words(xCorpus.fileids()[x])))
DTM = pd.DataFrame(fd_list, index = xCorpus.fileids())
DTM.fillna(0,inplace = True)
return DTM.T
それを実行する
import nltk
from nltk.corpus import PlaintextCorpusReader
corpus_root = 'C:/Data/'
newcorpus = PlaintextCorpusReader(corpus_root, '.*')
x = fnDTM_Corpus(newcorpus)
コーパス内のいくつかの小さなファイルに対してはうまく機能しますが、4,000ファイル(それぞれ約2 kb)のコーパスで実行しようとするとMemoryErrorが得られます。
何か不足していますか?
32ビットのpythonを使用しています。 (Windows 7、64ビットOS、Core Quad CPU、8 GB RAM)。このサイズのコーパスでは本当に64ビットを使用する必要がありますか?
RadimとLarsmansに感謝します。私の目的は、R tmで得られるようなDTMを持つことでした。私はscikit-learnを使用することを決定し、一部は このブログエントリ に触発されました。これは私が思いついたコードです。
他の誰かが役に立てば幸いです。ここに投稿します。
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
def fn_tdm_df(docs, xColNames = None, **kwargs):
''' create a term document matrix as pandas DataFrame
with **kwargs you can pass arguments of CountVectorizer
if xColNames is given the dataframe gets columns Names'''
#initialize the vectorizer
vectorizer = CountVectorizer(**kwargs)
x1 = vectorizer.fit_transform(docs)
#create dataFrame
df = pd.DataFrame(x1.toarray().transpose(), index = vectorizer.get_feature_names())
if xColNames is not None:
df.columns = xColNames
return df
ディレクトリ内のテキストのリストで使用するには
DIR = 'C:/Data/'
def fn_CorpusFromDIR(xDIR):
''' functions to create corpus from a Directories
Input: Directory
Output: A dictionary with
Names of files ['ColNames']
the text in corpus ['docs']'''
import os
Res = dict(docs = [open(os.path.join(xDIR,f)).read() for f in os.listdir(xDIR)],
ColNames = map(lambda x: 'P_' + x[0:6], os.listdir(xDIR)))
return Res
d1 = fn_tdm_df(docs = fn_CorpusFromDIR(DIR)['docs'],
xColNames = fn_CorpusFromDIR(DIR)['ColNames'],
stop_words=None, charset_error = 'replace')
OPがNLTKでtdmを作成したかったのはわかっていますが、textmining
パッケージ(pip install textmining
)を使用すると、非常にシンプルになります。
import textmining
def termdocumentmatrix_example():
# Create some very short sample documents
doc1 = 'John and Bob are brothers.'
doc2 = 'John went to the store. The store was closed.'
doc3 = 'Bob went to the store too.'
# Initialize class to create term-document matrix
tdm = textmining.TermDocumentMatrix()
# Add the documents
tdm.add_doc(doc1)
tdm.add_doc(doc2)
tdm.add_doc(doc3)
# Write out the matrix to a csv file. Note that setting cutoff=1 means
# that words which appear in 1 or more documents will be included in
# the output (i.e. every Word will appear in the output). The default
# for cutoff is 2, since we usually aren't interested in words which
# appear in a single document. For this example we want to see all
# words however, hence cutoff=1.
tdm.write_csv('matrix.csv', cutoff=1)
# Instead of writing out the matrix you can also access its rows directly.
# Let's print them to the screen.
for row in tdm.rows(cutoff=1):
print row
termdocumentmatrix_example()
出力:
['and', 'the', 'brothers', 'to', 'are', 'closed', 'bob', 'john', 'was', 'went', 'store', 'too']
[1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0]
[0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 2, 0]
[0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1]
または、pandas and sklearn [source] を使用することもできます。
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
docs = ['why hello there', 'omg hello pony', 'she went there? omg']
vec = CountVectorizer()
X = vec.fit_transform(docs)
df = pd.DataFrame(X.toarray(), columns=vec.get_feature_names())
print(df)
出力:
hello omg pony she there went why
0 1 0 0 0 1 0 1
1 1 1 1 0 0 0 0
2 0 1 0 1 1 1 0
トークンとデータフレームを使用した代替アプローチ
import nltk
comment #nltk.download() to get toenize
from urllib import request
url = "http://www.gutenberg.org/files/2554/2554-0.txt"
response = request.urlopen(url)
raw = response.read().decode('utf8')
type(raw)
tokens = nltk.Word_tokenize(raw)
type(tokens)
tokens[1:10]
['Project',
'Gutenberg',
'EBook',
'of',
'Crime',
'and',
'Punishment',
',',
'by']
tokens2=pd.DataFrame(tokens)
tokens2.columns=['Words']
tokens2.head()
Words
0 The
1 Project
2 Gutenberg
3 EBook
4 of
tokens2.Words.value_counts().head()
, 16178
. 9589
the 7436
and 6284
to 5278