matlabではこれを行います:
>> E = [];
>> A = [1 2 3 4 5; 10 20 30 40 50];
>> E = [E ; A]
E =
1 2 3 4 5
10 20 30 40 50
Numpyでも同じものが欲しいのですが、問題があります。これを見てください:
>>> E = array([],dtype=int)
>>> E
array([], dtype=int64)
>>> A = array([[1,2,3,4,5],[10,20,30,40,50]])
>>> E = vstack((E,A))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/numpy/core/shape_base.py", line 226, in vstack
return _nx.concatenate(map(atleast_2d,tup),0)
ValueError: array dimensions must agree except for d_0
私がこれを行うと同様の状況があります:
>>> E = concatenate((E,A),axis=0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: arrays must have same number of dimensions
または:
>>> E = append([E],[A],axis=0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/numpy/lib/function_base.py", line 3577, in append
return concatenate((arr, values), axis=axis)
ValueError: arrays must have same number of dimensions
事前に列の数がわかっている場合:
>>> xs = np.array([[1,2,3,4,5],[10,20,30,40,50]])
>>> ys = np.array([], dtype=np.int64).reshape(0,5)
>>> ys
array([], shape=(0, 5), dtype=int64)
>>> np.vstack([ys, xs])
array([[ 1., 2., 3., 4., 5.],
[ 10., 20., 30., 40., 50.]])
そうでない場合:
>>> ys = np.array([])
>>> ys = np.vstack([ys, xs]) if ys.size else xs
array([[ 1, 2, 3, 4, 5],
[10, 20, 30, 40, 50]])
ループ内で初期化された空の配列と配列を連結できないという理由だけでこれを行いたい場合は、条件文を使用してください。
if (i == 0):
do the first assignment
else:
start your contactenate
この種の問題に対処するために私が構築したもの。 np.array
の代わりにlist
入力も処理します。
import numpy as np
def cat(tupleOfArrays, axis=0):
# deals with problems of concating empty arrays
# also gives better error massages
# first check that the input is correct
assert isinstance(tupleOfArrays, Tuple), 'first var should be Tuple of arrays'
firstFlag = True
res = np.array([])
# run over each element in Tuple
for i in range(len(tupleOfArrays)):
x = tupleOfArrays[i]
if len(x) > 0: # if an empty array\list - skip
if isinstance(x, list): # all should be ndarray
x = np.array(x)
if x.ndim == 1: # easier to concat 2d arrays
x = x.reshape((1, -1))
if firstFlag: # for the first non empty array, just swich the empty res array with it
res = x
firstFlag = False
else: # actual concatination
# first check that concat dims are good
if axis == 0:
assert res.shape[1] == x.shape[1], "Error concating vertically element index " + str(i) + \
" with prior elements: given mat shapes are " + \
str(res.shape) + " & " + str(x.shape)
else: # axis == 1:
assert res.shape[0] == x.shape[0], "Error concating horizontally element index " + str(i) + \
" with prior elements: given mat shapes are " + \
str(res.shape) + " & " + str(x.shape)
res = np.concatenate((res, x), axis=axis)
return res
if __== "__main__":
print(cat((np.array([]), [])))
print(cat((np.array([1, 2, 3]), np.array([]), [1, 3, 54+1j]), axis=0))
print(cat((np.array([[1, 2, 3]]).T, np.array([]), np.array([[1, 3, 54+1j]]).T), axis=1))
print(cat((np.array([[1, 2, 3]]).T, np.array([]), np.array([[3, 54]]).T), axis=1)) # a bad one