Pythonのfminunc
関数(octave/matlabから)に代わるものはありますか?バイナリ分類子のコスト関数があります。次に、勾配降下法を実行して、シータの最小値を取得します。オクターブ/ MATLABの実装は次のようになります。
% Set options for fminunc
options = optimset('GradObj', 'on', 'MaxIter', 400);
% Run fminunc to obtain the optimal theta
% This function will return theta and the cost
[theta, cost] = ...
fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);
Numpyライブラリを使用してpython=でcostFunctionを変換し、numpyでfminuncまたは他の勾配降下アルゴリズムの実装を探しています。
関心のある関数についての詳細は、ここにあります: http://docs.scipy.org/doc/scipy-0.10.0/reference/tutorial/optimize.html
また、Coursera Machine Learningコースを受講しているようですが、Pythonを使用しています。あなたはチェックアウトするかもしれません http://aimotion.blogspot.com/2011/11/machine-learning-with-python-logistic.html ;この男は同じことをしています。
また、Coursera MLコースで説明されているように、Pythonでロジスティック回帰を実装しようとしていました。 scipyは役に立ちました。最小化関数でさまざまなアルゴリズムの実装を試した後、私はニュートン共役勾配が最も役立つとわかりました。また、その戻り値を調べたところ、Octaveのfminuncと同等のようです。私はpython以下の検索に実装を含めて、最適なシータを見つけます。
import numpy as np
import scipy.optimize as op
def Sigmoid(z):
return 1/(1 + np.exp(-z));
def Gradient(theta,x,y):
m , n = x.shape
theta = theta.reshape((n,1));
y = y.reshape((m,1))
sigmoid_x_theta = Sigmoid(x.dot(theta));
grad = ((x.T).dot(sigmoid_x_theta-y))/m;
return grad.flatten();
def CostFunc(theta,x,y):
m,n = x.shape;
theta = theta.reshape((n,1));
y = y.reshape((m,1));
term1 = np.log(Sigmoid(x.dot(theta)));
term2 = np.log(1-Sigmoid(x.dot(theta)));
term1 = term1.reshape((m,1))
term2 = term2.reshape((m,1))
term = y * term1 + (1 - y) * term2;
J = -((np.sum(term))/m);
return J;
# intialize X and y
X = np.array([[1,2,3],[1,3,4]]);
y = np.array([[1],[0]]);
m , n = X.shape;
initial_theta = np.zeros(n);
Result = op.minimize(fun = CostFunc,
x0 = initial_theta,
args = (X, y),
method = 'TNC',
jac = Gradient);
optimal_theta = Result.x;
scipy
に変更する必要があるようです。
そこでは、すべての基本的な最適化アルゴリズムが容易に実装されています。
以下のように実装され、octivaの同様の結果を取得します。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
filepath =('C:/Pythontry/MachineLearning/dataset/couresra/ex2data1.txt')
data =pd.read_csv(filepath,sep=',',header=None)
#print(data)
X = data.values[:,:2] #(100,2)
y = data.values[:,2:3] #(100,1)
#print(np.shape(y))
#In 2
#%% ==================== Part 1: Plotting ====================
postive_value = data.loc[data[2] == 1]
#print(postive_value.values[:,2:3])
negative_value = data.loc[data[2] == 0]
#print(len(postive_value))
#print(len(negative_value))
ax1 = postive_value.plot(kind='scatter',x=0,y=1,s=50,color='b',marker="+",label="Admitted") # S is line width #https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.scatter.html#matplotlib.axes.Axes.scatter
ax2 = negative_value.plot(kind='scatter',x=0,y=1,s=50,color='y',ax=ax1,label="Not Admitted")
ax1.set_xlabel("Exam 1 score")
ax2.set_ylabel("Exam 2 score")
plt.show()
#print(ax1 == ax2)
#print(np.shape(X))
# In 3
#============ Part 2: Compute Cost and Gradient ===========
[m,n] = np.shape(X) #(100,2)
print(m,n)
additional_coulmn = np.ones((m,1))
X = np.append(additional_coulmn,X,axis=1)
initial_theta = np.zeros((n+1), dtype=int)
print(initial_theta)
# In4
#Sigmoid and cost function
def sigmoid(z):
g = np.zeros(np.shape(z));
g = 1/(1+np.exp(-z));
return g
def costFunction(theta, X, y):
J = 0;
#print(theta)
receive_theta = np.array(theta)[np.newaxis] ##This command is used to create the 1D array
#print(receive_theta)
theta = np.transpose(receive_theta)
#print(np.shape(theta))
#grad = np.zeros(np.shape(theta))
z = np.dot(X,theta) # where z = theta*X
#print(z)
h = sigmoid(z) #formula h(x) = g(z) whether g = 1/1+e(-z) #(100,1)
#print(np.shape(h))
#J = np.sum(((-y)*np.log(h)-(1-y)*np.log(1-h))/m);
J = np.sum(np.dot((-y.T),np.log(h))-np.dot((1-y).T,np.log(1-h)))/m
#J = (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()
#error = h-y
#print(np.shape(error))
#print(np.shape(X))
grad =np.dot(X.T,(h-y))/m
#print(grad)
return J,grad
#In5
[cost, grad] = costFunction(initial_theta, X, y)
print('Cost at initial theta (zeros):', cost)
print('Expected cost (approx): 0.693\n')
print('Gradient at initial theta (zeros): \n',grad)
print('Expected gradients (approx):\n -0.1000\n -12.0092\n -11.2628\n')
In6 # Compute and display cost and gradient with non-zero theta
test_theta = [-24, 0.2, 0.2]
#test_theta_value = np.array([-24, 0.2, 0.2])[np.newaxis] #This command is used to create the 1D row array
#test_theta = np.transpose(test_theta_value) # Transpose
#test_theta = test_theta_value.transpose()
[cost, grad] = costFunction(test_theta, X, y)
print('\nCost at test theta: \n', cost)
print('Expected cost (approx): 0.218\n')
print('Gradient at test theta: \n',grad);
print('Expected gradients (approx):\n 0.043\n 2.566\n 2.647\n')
#IN6
# ============= Part 3: Optimizing using range =============
import scipy.optimize as opt
#initial_theta_initialize = np.array([0, 0, 0])[np.newaxis]
#initial_theta = np.transpose(initial_theta_initialize)
print ('Executing minimize function...\n')
# Working models
#result = opt.minimize(costFunction,initial_theta,args=(X,y),method='TNC',jac=True,options={'maxiter':400})
result = opt.fmin_tnc(func=costFunction, x0=initial_theta, args=(X, y))
# Not working model
#costFunction(initial_theta,X,y)
#model = opt.minimize(fun = costFunction, x0 = initial_theta, args = (X, y), method = 'TNC',jac = costFunction)
print('Thetas found by fmin_tnc function: ', result);
print('Cost at theta found : \n', cost);
print('Expected cost (approx): 0.203\n');
print('theta: \n',result[0]);
print('Expected theta (approx):\n');
print(' -25.161\n 0.206\n 0.201\n');
出力:最小化機能を実行しています...
Fmin_tnc関数によって検出されたシータ:(array([-25.16131854、0.20623159、0.20147149])、36、0)シータでのコスト:0.218330193827予想コスト(約):0.203
シータ:[-25.16131854 0.20623159 0.20147149]予想されるシータ(およそ):
-25.161 0.206 0.201