web-dev-qa-db-ja.com

numpy数値配列を成長させる最速の方法

要件:

  • データから配列を任意に大きくする必要があります。
  • 配列が毎回適合するという保証なしに、サイズ(約100〜200)を推測できます。
  • 最終サイズに成長したら、数値計算を実行する必要があるため、最終的には2次元のnumpy配列に到達することを望みます。
  • 速度が重要です。例として、300個のファイルの1つに対して、update()メソッドは4,500万回呼び出され(150秒程度かかります)、finalize()メソッドは50万回呼び出されます(合計106秒かかります)...合計250秒かかりますとか、ぐらい。

ここに私のコードがあります:

def __init__(self):
    self.data = []

def update(self, row):
    self.data.append(row)

def finalize(self):
    dx = np.array(self.data)

私が試した他のことには、次のコードが含まれます...しかし、これは遅くなります。

def class A:
    def __init__(self):
        self.data = np.array([])

    def update(self, row):
        np.append(self.data, row)

    def finalize(self):
        dx = np.reshape(self.data, size=(self.data.shape[0]/5, 5))

これがどのように呼ばれるかの概略図です:

for i in range(500000):
    ax = A()
    for j in range(200):
         ax.update([1,2,3,4,5])
    ax.finalize()
    # some processing on ax
63
fodon

タイミングを合わせて、いくつかの異なることを試しました。

import numpy as np
  1. あなたが遅いと言っている方法:(32.094秒)

    class A:
    
        def __init__(self):
            self.data = np.array([])
    
        def update(self, row):
            self.data = np.append(self.data, row)
    
        def finalize(self):
            return np.reshape(self.data, newshape=(self.data.shape[0]/5, 5))
    
  2. 通常のol Python list:(0.308秒)

    class B:
    
        def __init__(self):
            self.data = []
    
        def update(self, row):
            for r in row:
                self.data.append(r)
    
        def finalize(self):
            return np.reshape(self.data, newshape=(len(self.data)/5, 5))
    
  3. Numpyでarraylistを実装しようとしています:(0.362秒)

    class C:
    
        def __init__(self):
            self.data = np.zeros((100,))
            self.capacity = 100
            self.size = 0
    
        def update(self, row):
            for r in row:
                self.add(r)
    
        def add(self, x):
            if self.size == self.capacity:
                self.capacity *= 4
                newdata = np.zeros((self.capacity,))
                newdata[:self.size] = self.data
                self.data = newdata
    
            self.data[self.size] = x
            self.size += 1
    
        def finalize(self):
            data = self.data[:self.size]
            return np.reshape(data, newshape=(len(data)/5, 5))
    

そして、これは私がそれを計った方法です:

x = C()
for i in xrange(100000):
    x.update([i])

したがって、通常の古いPythonリストはかなり良い;)

75
Owen

np.append()は毎回配列内のすべてのデータをコピーしますが、リストは係数(1.125)で容量を増やします。リストは高速ですが、メモリ使用量は配列よりも大きくなります。メモリを気にする場合は、python標準ライブラリの配列モジュールを使用できます。

このトピックに関するディスカッションは次のとおりです。

動的配列の作成方法

18
HYRY

Owenの投稿のクラス宣言を使用して、ファイナライズの効果があるタイミングを修正します。

要するに、元の投稿のメソッドよりも60倍以上高速な実装を提供するクラスCを見つけました。 (テキストの壁の謝罪)

私が使用したファイル:

#!/usr/bin/python
import cProfile
import numpy as np

# ... class declarations here ...

def test_class(f):
    x = f()
    for i in xrange(100000):
        x.update([i])
    for i in xrange(1000):
        x.finalize()

for x in 'ABC':
    cProfile.run('test_class(%s)' % x)

次に、結果のタイミング:

     903005 function calls in 16.049 seconds

Ordered by: standard name

ncalls  tottime  percall  cumtime  percall filename:lineno(function)
     1    0.000    0.000   16.049   16.049 <string>:1(<module>)
100000    0.139    0.000    1.888    0.000 fromnumeric.py:1043(ravel)
  1000    0.001    0.000    0.003    0.000 fromnumeric.py:107(reshape)
100000    0.322    0.000   14.424    0.000 function_base.py:3466(append)
100000    0.102    0.000    1.623    0.000 numeric.py:216(asarray)
100000    0.121    0.000    0.298    0.000 numeric.py:286(asanyarray)
  1000    0.002    0.000    0.004    0.000 test.py:12(finalize)
     1    0.146    0.146   16.049   16.049 test.py:50(test_class)
     1    0.000    0.000    0.000    0.000 test.py:6(__init__)
100000    1.475    0.000   15.899    0.000 test.py:9(update)
     1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}
100000    0.126    0.000    0.126    0.000 {method 'ravel' of 'numpy.ndarray' objects}
  1000    0.002    0.000    0.002    0.000 {method 'reshape' of 'numpy.ndarray' objects}
200001    1.698    0.000    1.698    0.000 {numpy.core.multiarray.array}
100000   11.915    0.000   11.915    0.000 {numpy.core.multiarray.concatenate}


     208004 function calls in 16.885 seconds

Ordered by: standard name

ncalls  tottime  percall  cumtime  percall filename:lineno(function)
     1    0.001    0.001   16.885   16.885 <string>:1(<module>)
  1000    0.025    0.000   16.508    0.017 fromnumeric.py:107(reshape)
  1000    0.013    0.000   16.483    0.016 fromnumeric.py:32(_wrapit)
  1000    0.007    0.000   16.445    0.016 numeric.py:216(asarray)
     1    0.000    0.000    0.000    0.000 test.py:16(__init__)
100000    0.068    0.000    0.080    0.000 test.py:19(update)
  1000    0.012    0.000   16.520    0.017 test.py:23(finalize)
     1    0.284    0.284   16.883   16.883 test.py:50(test_class)
  1000    0.005    0.000    0.005    0.000 {getattr}
  1000    0.001    0.000    0.001    0.000 {len}
100000    0.012    0.000    0.012    0.000 {method 'append' of 'list' objects}
     1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}
  1000    0.020    0.000    0.020    0.000 {method 'reshape' of 'numpy.ndarray' objects}
  1000   16.438    0.016   16.438    0.016 {numpy.core.multiarray.array}


     204010 function calls in 0.244 seconds

Ordered by: standard name

ncalls  tottime  percall  cumtime  percall filename:lineno(function)
     1    0.000    0.000    0.244    0.244 <string>:1(<module>)
  1000    0.001    0.000    0.003    0.000 fromnumeric.py:107(reshape)
     1    0.000    0.000    0.000    0.000 test.py:27(__init__)
100000    0.082    0.000    0.170    0.000 test.py:32(update)
100000    0.087    0.000    0.088    0.000 test.py:36(add)
  1000    0.002    0.000    0.005    0.000 test.py:46(finalize)
     1    0.068    0.068    0.243    0.243 test.py:50(test_class)
  1000    0.000    0.000    0.000    0.000 {len}
     1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}
  1000    0.002    0.000    0.002    0.000 {method 'reshape' of 'numpy.ndarray' objects}
     6    0.001    0.000    0.001    0.000 {numpy.core.multiarray.zeros}

クラスAは更新によって破棄され、クラスBはファイナライズによって破棄されます。クラスCは、両方に直面しても堅牢です。

11
Prashant Kumar

ファイナライズに使用する機能にはパフォーマンスの大きな違いがあります。次のコードを検討してください。

N=100000
nruns=5

a=[]
for i in range(N):
    a.append(np.zeros(1000))

print "start"

b=[]
for i in range(nruns):
    s=time()
    c=np.vstack(a)
    b.append((time()-s))
print "Timing version vstack ",np.mean(b)

b=[]
for i in range(nruns):
    s=time()
    c1=np.reshape(a,(N,1000))
    b.append((time()-s))

print "Timing version reshape ",np.mean(b)

b=[]
for i in range(nruns):
    s=time()
    c2=np.concatenate(a,axis=0).reshape(-1,1000)
    b.append((time()-s))

print "Timing version concatenate ",np.mean(b)

print c.shape,c2.shape
assert (c==c2).all()
assert (c==c1).all()

Concatenateの使用は、最初のバージョンの2倍、2番目のバージョンよりも10倍以上速いようです。

Timing version vstack  1.5774928093
Timing version reshape  9.67419199944
Timing version concatenate  0.669512557983
3
Luca Fiaschi

リスト操作でパフォーマンスを改善したい場合は、blistライブラリをご覧ください。 pythonリストおよびその他の構造の最適化された実装です。

まだベンチマークしていませんが、彼らのページの結果は有望なようです。

1
joaonrb