web-dev-qa-db-ja.com

OpenCV 2.4.1-PythonでSURF記述子を計算する

cv2.SURF()およびcv2.FeatureDetector_create("SURF")ではなく、cv2.DescriptorExtractor_create("SURF")を使用するようにコードを更新しようとしています。ただし、キーポイントを検出した後、記述子を取得できません。 SURF.detectを呼び出す正しい方法は何ですか?

OpenCVのドキュメントを試してみましたが、少し混乱しています。これはそれがドキュメントで言うことです。

Python: cv2.SURF.detect(img, mask) → keypoints¶
Python: cv2.SURF.detect(img, mask[, descriptors[, useProvidedKeypoints]]) → keypoints, descriptors

SURF.detectを2回目に呼び出すときにキーポイントを渡すにはどうすればよいですか?

19
Kkov

私はあなたの質問を正しく理解しているかどうかわかりません。しかし、一致するSURFキーポイントのサンプルを探している場合は、テンプレートマッチングに類似した非常にシンプルで基本的なものを以下に示します。

import cv2
import numpy as np

# Load the images
img =cv2.imread('messi4.jpg')

# Convert them to grayscale
imgg =cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

# SURF extraction
surf = cv2.SURF()
kp, descritors = surf.detect(imgg,None,useProvidedKeypoints = False)

# Setting up samples and responses for kNN
samples = np.array(descritors)
responses = np.arange(len(kp),dtype = np.float32)

# kNN training
knn = cv2.KNearest()
knn.train(samples,responses)

# Now loading a template image and searching for similar keypoints
template = cv2.imread('template.jpg')
templateg= cv2.cvtColor(template,cv2.COLOR_BGR2GRAY)
keys,desc = surf.detect(templateg,None,useProvidedKeypoints = False)

for h,des in enumerate(desc):
    des = np.array(des,np.float32).reshape((1,128))
    retval, results, neigh_resp, dists = knn.find_nearest(des,1)
    res,dist =  int(results[0][0]),dists[0][0]

    if dist<0.1: # draw matched keypoints in red color
        color = (0,0,255)
    else:  # draw unmatched in blue color
        print dist
        color = (255,0,0)

    #Draw matched key points on original image
    x,y = kp[res].pt
    center = (int(x),int(y))
    cv2.circle(img,center,2,color,-1)

    #Draw matched key points on template image
    x,y = keys[h].pt
    center = (int(x),int(y))
    cv2.circle(template,center,2,color,-1)

cv2.imshow('img',img)
cv2.imshow('tm',template)
cv2.waitKey(0)
cv2.destroyAllWindows()

以下は、私が得た結果です(ペイントを使用して、元の画像に貼り付けたテンプレート画像をコピーします)。

enter image description here

enter image description here

ご覧のとおり、いくつかの小さな間違いがありますです。しかし、スタートアップにとっては、それが大丈夫だと願っています。

35
Abid Rahman K

上記のアルゴリズムの改良点は次のとおりです。

import cv2
import numpy

opencv_haystack =cv2.imread('haystack.jpg')
opencv_needle =cv2.imread('needle.jpg')

ngrey = cv2.cvtColor(opencv_needle, cv2.COLOR_BGR2GRAY)
hgrey = cv2.cvtColor(opencv_haystack, cv2.COLOR_BGR2GRAY)

# build feature detector and descriptor extractor
hessian_threshold = 85
detector = cv2.SURF(hessian_threshold)
(hkeypoints, hdescriptors) = detector.detect(hgrey, None, useProvidedKeypoints = False)
(nkeypoints, ndescriptors) = detector.detect(ngrey, None, useProvidedKeypoints = False)

# extract vectors of size 64 from raw descriptors numpy arrays
rowsize = len(hdescriptors) / len(hkeypoints)
if rowsize > 1:
    hrows = numpy.array(hdescriptors, dtype = numpy.float32).reshape((-1, rowsize))
    nrows = numpy.array(ndescriptors, dtype = numpy.float32).reshape((-1, rowsize))
    #print hrows.shape, nrows.shape
else:
    hrows = numpy.array(hdescriptors, dtype = numpy.float32)
    nrows = numpy.array(ndescriptors, dtype = numpy.float32)
    rowsize = len(hrows[0])

# kNN training - learn mapping from hrow to hkeypoints index
samples = hrows
responses = numpy.arange(len(hkeypoints), dtype = numpy.float32)
#print len(samples), len(responses)
knn = cv2.KNearest()
knn.train(samples,responses)

# retrieve index and value through enumeration
for i, descriptor in enumerate(nrows):
    descriptor = numpy.array(descriptor, dtype = numpy.float32).reshape((1, rowsize))
    #print i, descriptor.shape, samples[0].shape
    retval, results, neigh_resp, dists = knn.find_nearest(descriptor, 1)
    res, dist =  int(results[0][0]), dists[0][0]
    #print res, dist

    if dist < 0.1:
        # draw matched keypoints in red color
        color = (0, 0, 255)
    else:
        # draw unmatched in blue color
        color = (255, 0, 0)
    # draw matched key points on haystack image
    x,y = hkeypoints[res].pt
    center = (int(x),int(y))
    cv2.circle(opencv_haystack,center,2,color,-1)
    # draw matched key points on needle image
    x,y = nkeypoints[i].pt
    center = (int(x),int(y))
    cv2.circle(opencv_needle,center,2,color,-1)

cv2.imshow('haystack',opencv_haystack)
cv2.imshow('needle',opencv_needle)
cv2.waitKey(0)
cv2.destroyAllWindows()

使用されているデータ構造についてより良いアイデアを得るために、printステートメントのコメントを外すことができます。

4
pevogam