読んだ後: http://pandas.pydata.org/pandas-docs/version/0.13.1/generated/pandas.DataFrame.sort.html
カスタムリストで列を並べ替える方法がまだわからないようです。明らかに、デフォルトのソートはアルファベット順です。例を挙げましょう。これが私の(非常に簡略化された)データフレームです。
Player Year Age Tm G
2967 Cedric Hunter 1991 27 CHH 6
5335 Maurice Baker 2004 25 VAN 7
13950 Ratko Varda 2001 22 TOT 60
6141 Ryan Bowen 2009 34 OKC 52
6169 Adrian Caldwell 1997 31 DAL 81
Player、Year、Tmでソートできるようにしたいです。 PlayerとYearによるデフォルトのソートは、通常の順序で私にとっては問題ありません。ただし、チームをアルファベット順にソートしたくないb/c常にトップにTOTが必要です。
これが私が作成したリストです。
sorter = ['TOT', 'ATL', 'BOS', 'BRK', 'CHA', 'CHH', 'CHI', 'CLE', 'DAL', 'DEN',
'DET', 'GSW', 'HOU', 'IND', 'LAC', 'LAL', 'MEM', 'MIA', 'MIL',
'MIN', 'NJN', 'NOH', 'NOK', 'NOP', 'NYK', 'OKC', 'ORL', 'PHI',
'PHO', 'POR', 'SAC', 'SAS', 'SEA', 'TOR', 'UTA', 'VAN',
'WAS', 'WSB']
上記のリンクを読んだ後、これはうまくいくと思いましたが、うまくいきませんでした:
df.sort(['Player', 'Year', 'Tm'], ascending = [True, True, sorter])
まだ上部にATLがあります。つまり、カスタムリストに従ってではなく、アルファベット順にソートされています。どんな助けも本当に感謝します、私はこれを理解することができません。
以下は、データフレームで辞書式ソートを実行する例です。アイデアは、特定の並べ替えに基づいて数値インデックスを作成することです。次に、インデックスに基づいて数値ソートを実行します。そのためにデータフレームに列が追加され、その後削除されます。
import pandas as pd
# Create DataFrame
df = pd.DataFrame(
{'id':[2967, 5335, 13950, 6141, 6169],\
'Player': ['Cedric Hunter', 'Maurice Baker' ,\
'Ratko Varda' ,'Ryan Bowen' ,'Adrian Caldwell'],\
'Year': [1991 ,2004 ,2001 ,2009 ,1997],\
'Age': [27 ,25 ,22 ,34 ,31],\
'Tm':['CHH' ,'VAN' ,'TOT' ,'OKC' ,'DAL'],\
'G':[6 ,7 ,60 ,52 ,81]})
# Define the sorter
sorter = ['TOT', 'ATL', 'BOS', 'BRK', 'CHA', 'CHH', 'CHI', 'CLE', 'DAL','DEN',\
'DET', 'GSW', 'HOU', 'IND', 'LAC', 'LAL', 'MEM', 'MIA', 'MIL',\
'MIN', 'NJN', 'NOH', 'NOK', 'NOP', 'NYK', 'OKC', 'ORL', 'PHI',\
'PHO', 'POR', 'SAC', 'SAS', 'SEA', 'TOR', 'UTA', 'VAN',\
'WAS', 'WSB']
# Create the dictionary that defines the order for sorting
sorterIndex = dict(Zip(sorter,range(len(sorter))))
# Generate a rank column that will be used to sort
# the dataframe numerically
df['Tm_Rank'] = df['Tm'].map(sorterIndex)
# Here is the result asked with the lexicographic sort
# Result may be hard to analyze, so a second sorting is
# proposed next
## NOTE:
## Newer versions of pandas use 'sort_values' instead of 'sort'
df.sort_values(['Player', 'Year', 'Tm_Rank'], \
ascending = [True, True, True], inplace = True)
df.drop('Tm_Rank', 1, inplace = True)
print(df)
# Here is an example where 'Tm' is sorted first, that will
# give the first row of the DataFrame df to contain TOT as 'Tm'
df['Tm_Rank'] = df['Tm'].map(sorterIndex)
## NOTE:
## Newer versions of pandas use 'sort_values' instead of 'sort'
df.sort_values(['Tm_Rank', 'Player', 'Year'], \
ascending = [True , True, True], inplace = True)
df.drop('Tm_Rank', 1, inplace = True)
print(df)
pandas 15.1でカテゴリシリーズを使用できることを発見しました( http://pandas.pydata.org/pandas-docs/stable/getting_started/10min.html# categoricals )
あなたの例に関しては、同じデータフレームとソーターを定義しましょう:
import pandas as pd
data = {
'id': [2967, 5335, 13950, 6141, 6169],
'Player': ['Cedric Hunter', 'Maurice Baker',
'Ratko Varda' ,'Ryan Bowen' ,'Adrian Caldwell'],
'Year': [1991, 2004, 2001, 2009, 1997],
'Age': [27, 25, 22, 34, 31],
'Tm': ['CHH', 'VAN', 'TOT', 'OKC', 'DAL'],
'G': [6, 7, 60, 52, 81]
}
# Create DataFrame
df = pd.DataFrame(data)
# Define the sorter
sorter = ['TOT', 'ATL', 'BOS', 'BRK', 'CHA', 'CHH', 'CHI', 'CLE', 'DAL', 'DEN',
'DET', 'GSW', 'HOU', 'IND', 'LAC', 'LAL', 'MEM', 'MIA', 'MIL',
'MIN', 'NJN', 'NOH', 'NOK', 'NOP', 'NYK', 'OKC', 'ORL', 'PHI',
'PHO', 'POR', 'SAC', 'SAS', 'SEA', 'TOR', 'UTA', 'VAN', 'WAS', 'WSB']
カテゴリ順であるデータフレームとソーターを使用すると、pandas 15.1:
# Convert Tm-column to category and in set the sorter as categories hierarchy
# Youc could also do both lines in one just appending the cat.set_categories()
df.Tm = df.Tm.astype("category")
df.Tm.cat.set_categories(sorter, inplace=True)
print(df.Tm)
Out[48]:
0 CHH
1 VAN
2 TOT
3 OKC
4 DAL
Name: Tm, dtype: category
Categories (38, object): [TOT < ATL < BOS < BRK ... UTA < VAN < WAS < WSB]
df.sort_values(["Tm"]) ## 'sort' changed to 'sort_values'
Out[49]:
Age G Player Tm Year id
2 22 60 Ratko Varda TOT 2001 13950
0 27 6 Cedric Hunter CHH 1991 2967
4 31 81 Adrian Caldwell DAL 1997 6169
3 34 52 Ryan Bowen OKC 2009 6141
1 25 7 Maurice Baker VAN 2004 5335
私のアイデアは、インデックスによってソート番号を生成し、ソート番号を元のデータフレームにマージすることです
import pandas as pd
df = pd.DataFrame(
{'id':[2967, 5335, 13950, 6141, 6169],\
'Player': ['Cedric Hunter', 'Maurice Baker' ,\
'Ratko Varda' ,'Ryan Bowen' ,'Adrian Caldwell'],\
'Year': [1991 ,2004 ,2001 ,2009 ,1997],\
'Age': [27 ,25 ,22 ,34 ,31],\
'Tm':['CHH' ,'VAN' ,'TOT' ,'OKC' ,'DAL'],\
'G':[6 ,7 ,60 ,52 ,81]})
sorter = ['TOT', 'ATL', 'BOS', 'BRK', 'CHA', 'CHH', 'CHI', 'CLE', 'DAL', 'DEN',
'DET', 'GSW', 'HOU', 'IND', 'LAC', 'LAL', 'MEM', 'MIA', 'MIL',
'MIN', 'NJN', 'NOH', 'NOK', 'NOP', 'NYK', 'OKC', 'ORL', 'PHI',
'PHO', 'POR', 'SAC', 'SAS', 'SEA', 'TOR', 'UTA', 'VAN',
'WAS', 'WSB']
x = pd.DataFrame({'Tm': sorter})
x.index = x.index.set_names('number')
x = x.reset_index()
df = pd.merge(df, x, how='left', on='Tm')
df.sort_values(['Player', 'Year', 'number'], \
ascending = [True, True, True], inplace = True)
df.drop('number', 1, inplace = True)