Pandas DataFrameがあるので、「lat」列と「long」列を組み合わせてTupleを作成します。
<class 'pandas.core.frame.DataFrame'>
Int64Index: 205482 entries, 0 to 209018
Data columns:
Month 205482 non-null values
Reported by 205482 non-null values
Falls within 205482 non-null values
Easting 205482 non-null values
Northing 205482 non-null values
Location 205482 non-null values
Crime type 205482 non-null values
long 205482 non-null values
lat 205482 non-null values
dtypes: float64(4), object(5)
私が使用しようとしたコードは:
def merge_two_cols(series):
return (series['lat'], series['long'])
sample['lat_long'] = sample.apply(merge_two_cols, axis=1)
ただし、次のエラーが返されました。
---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
<ipython-input-261-e752e52a96e6> in <module>()
2 return (series['lat'], series['long'])
3
----> 4 sample['lat_long'] = sample.apply(merge_two_cols, axis=1)
5
...
AssertionError: Block shape incompatible with manager
この問題を解決するにはどうすればよいですか?
Zip
に慣れてください。列データを扱うときに便利です。
df['new_col'] = list(Zip(df.lat, df.long))
apply
またはmap
を使用するよりも簡単で高速です。 np.dstack
のようなものはZip
の2倍の速度ですが、タプルを提供しません。
In [10]: df
Out[10]:
A B lat long
0 1.428987 0.614405 0.484370 -0.628298
1 -0.485747 0.275096 0.497116 1.047605
2 0.822527 0.340689 2.120676 -2.436831
3 0.384719 -0.042070 1.426703 -0.634355
4 -0.937442 2.520756 -1.662615 -1.377490
5 -0.154816 0.617671 -0.090484 -0.191906
6 -0.705177 -1.086138 -0.629708 1.332853
7 0.637496 -0.643773 -0.492668 -0.777344
8 1.109497 -0.610165 0.260325 2.533383
9 -1.224584 0.117668 1.304369 -0.152561
In [11]: df['lat_long'] = df[['lat', 'long']].apply(Tuple, axis=1)
In [12]: df
Out[12]:
A B lat long lat_long
0 1.428987 0.614405 0.484370 -0.628298 (0.484370195967, -0.6282975278)
1 -0.485747 0.275096 0.497116 1.047605 (0.497115615839, 1.04760475074)
2 0.822527 0.340689 2.120676 -2.436831 (2.12067574274, -2.43683074367)
3 0.384719 -0.042070 1.426703 -0.634355 (1.42670326172, -0.63435462504)
4 -0.937442 2.520756 -1.662615 -1.377490 (-1.66261469102, -1.37749004179)
5 -0.154816 0.617671 -0.090484 -0.191906 (-0.0904840623396, -0.191905582481)
6 -0.705177 -1.086138 -0.629708 1.332853 (-0.629707821728, 1.33285348929)
7 0.637496 -0.643773 -0.492668 -0.777344 (-0.492667604075, -0.777344111021)
8 1.109497 -0.610165 0.260325 2.533383 (0.26032456699, 2.5333825651)
9 -1.224584 0.117668 1.304369 -0.152561 (1.30436900612, -0.152560909725)
Pandasには itertuples
メソッドがあり、これを正確に実行できます。
list(df[['lat', 'long']].itertuples(index=False, name=None))