次のデータフレームを考える
In [31]: Rand = np.random.RandomState(1)
df = pd.DataFrame({'A': ['foo', 'bar', 'baz'] * 2,
'B': Rand.randn(6),
'C': Rand.rand(6) > .5})
In [32]: df
Out[32]: A B C
0 foo 1.624345 False
1 bar -0.611756 True
2 baz -0.528172 False
3 foo -1.072969 True
4 bar 0.865408 False
5 baz -2.301539 True
グループ(A
)をB
の総計で並べ替えてから、C
(集計されていない)の値で並べ替えます。したがって、基本的にはA
グループの順序を取得します
In [28]: df.groupby('A').sum().sort('B')
Out[28]: B C
A
baz -2.829710 1
bar 0.253651 1
foo 0.551377 1
そして、True/Falseによって、最終的には次のようになります。
In [30]: df.ix[[5, 2, 1, 4, 3, 0]]
Out[30]: A B C
5 baz -2.301539 True
2 baz -0.528172 False
1 bar -0.611756 True
4 bar 0.865408 False
3 foo -1.072969 True
0 foo 1.624345 False
これをどのように行うことができますか?
Groupby A:
In [0]: grp = df.groupby('A')
各グループ内で、Bを合計し、変換を使用して値をブロードキャストします。次に、Bでソートします。
In [1]: grp[['B']].transform(sum).sort('B')
Out[1]:
B
2 -2.829710
5 -2.829710
1 0.253651
4 0.253651
0 0.551377
3 0.551377
上からインデックスを渡すことにより、元のdfにインデックスを付けます。これにより、B値の合計によってA値が並べ替えられます。
In [2]: sort1 = df.ix[grp[['B']].transform(sum).sort('B').index]
In [3]: sort1
Out[3]:
A B C
2 baz -0.528172 False
5 baz -2.301539 True
1 bar -0.611756 True
4 bar 0.865408 False
0 foo 1.624345 False
3 foo -1.072969 True
最後に、sort=False
オプションを使用して「A」のグループ内の「C」値をソートし、ステップ1からのAソート順を保持します。
In [4]: f = lambda x: x.sort('C', ascending=False)
In [5]: sort2 = sort1.groupby('A', sort=False).apply(f)
In [6]: sort2
Out[6]:
A B C
A
baz 5 baz -2.301539 True
2 baz -0.528172 False
bar 1 bar -0.611756 True
4 bar 0.865408 False
foo 3 foo -1.072969 True
0 foo 1.624345 False
reset_index
とdrop=True
を使用して、dfインデックスをクリーンアップします。
In [7]: sort2.reset_index(0, drop=True)
Out[7]:
A B C
5 baz -2.301539 True
2 baz -0.528172 False
1 bar -0.611756 True
4 bar 0.865408 False
3 foo -1.072969 True
0 foo 1.624345 False
より簡潔なアプローチがあります...
df['a_bsum'] = df.groupby('A')['B'].transform(sum)
df.sort(['a_bsum','C'], ascending=[True, False]).drop('a_bsum', axis=1)
最初の行は、グループごとの合計でデータフレームに列を追加します。 2行目はソートを実行し、余分な列を削除します。
結果:
A B C
5 baz -2.301539 True
2 baz -0.528172 False
1 bar -0.611756 True
4 bar 0.865408 False
3 foo -1.072969 True
0 foo 1.624345 False
注:sort
は非推奨です。代わりにsort_values
を使用してください
これを行う1つの方法は、ソートするために合計を含むダミー列を挿入することです。
In [10]: sum_B_over_A = df.groupby('A').sum().B
In [11]: sum_B_over_A
Out[11]:
A
bar 0.253652
baz -2.829711
foo 0.551376
Name: B
in [12]: df['sum_B_over_A'] = df.A.apply(sum_B_over_A.get_value)
In [13]: df
Out[13]:
A B C sum_B_over_A
0 foo 1.624345 False 0.551376
1 bar -0.611756 True 0.253652
2 baz -0.528172 False -2.829711
3 foo -1.072969 True 0.551376
4 bar 0.865408 False 0.253652
5 baz -2.301539 True -2.829711
In [14]: df.sort(['sum_B_over_A', 'A', 'B'])
Out[14]:
A B C sum_B_over_A
5 baz -2.301539 True -2.829711
2 baz -0.528172 False -2.829711
1 bar -0.611756 True 0.253652
4 bar 0.865408 False 0.253652
3 foo -1.072969 True 0.551376
0 foo 1.624345 False 0.551376
そしておそらくあなたはダミー行をドロップするでしょう:
In [15]: df.sort(['sum_B_over_A', 'A', 'B']).drop('sum_B_over_A', axis=1)
Out[15]:
A B C
5 baz -2.301539 True
2 baz -0.528172 False
1 bar -0.611756 True
4 bar 0.865408 False
3 foo -1.072969 True
0 foo 1.624345 False