この1か月間、ExcelシートからPandasを使用して問題なく読んでいました。
最近、日付の形式を変更しましたが(これは、元の形式mm/dd/yyyyに戻されました)。
すべての突然Pandasが.xlsmを読み込もうとするとエラーがスローされるようになりました
以下は完全なエラーです
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-5-655581a0eaab> in <module>
----> 1 inv = p.read(r'C:\Users\Jake\OneDrive\Documents\Eastern\Inventory\Inventory_Log.xlsm')
~\Anaconda3\lib\site-packages\pyinv\__init__.py in read(filepath)
36 'Cert_Expire':'string',
37 'Rating':'string',
---> 38 'Notes':'string'
39 })
40 amount = inv.Item.count()
~\Anaconda3\lib\site-packages\pandas\io\Excel\_base.py in read_Excel(io, sheet_name, header, names, index_col, usecols, squeeze, dtype, engine, converters, true_values, false_values, skiprows, nrows, na_values, keep_default_na, verbose, parse_dates, date_parser, thousands, comment, skipfooter, convert_float, mangle_dupe_cols, **kwds)
332 convert_float=convert_float,
333 mangle_dupe_cols=mangle_dupe_cols,
--> 334 **kwds,
335 )
336
~\Anaconda3\lib\site-packages\pandas\io\Excel\_base.py in parse(self, sheet_name, header, names, index_col, usecols, squeeze, converters, true_values, false_values, skiprows, nrows, na_values, parse_dates, date_parser, thousands, comment, skipfooter, convert_float, mangle_dupe_cols, **kwds)
883 convert_float=convert_float,
884 mangle_dupe_cols=mangle_dupe_cols,
--> 885 **kwds,
886 )
887
~\Anaconda3\lib\site-packages\pandas\io\Excel\_base.py in parse(self, sheet_name, header, names, index_col, usecols, squeeze, dtype, true_values, false_values, skiprows, nrows, na_values, verbose, parse_dates, date_parser, thousands, comment, skipfooter, convert_float, mangle_dupe_cols, **kwds)
510 )
511
--> 512 output[asheetname] = parser.read(nrows=nrows)
513
514 if not squeeze or isinstance(output[asheetname], DataFrame):
~\Anaconda3\lib\site-packages\pandas\io\parsers.py in read(self, nrows)
1131 def read(self, nrows=None):
1132 nrows = _validate_integer("nrows", nrows)
-> 1133 ret = self._engine.read(nrows)
1134
1135 # May alter columns / col_dict
~\Anaconda3\lib\site-packages\pandas\io\parsers.py in read(self, rows)
2462 columns, data = self._do_date_conversions(columns, data)
2463
-> 2464 data = self._convert_data(data)
2465 index, columns = self._make_index(data, alldata, columns, indexnamerow)
2466
~\Anaconda3\lib\site-packages\pandas\io\parsers.py in _convert_data(self, data)
2532 self.verbose,
2533 clean_conv,
-> 2534 clean_dtypes,
2535 )
2536
~\Anaconda3\lib\site-packages\pandas\io\parsers.py in _convert_to_ndarrays(self, dct, na_values, na_fvalues, verbose, converters, dtypes)
1725 # invalid input to is_bool_dtype
1726 pass
-> 1727 cvals = self._cast_types(cvals, cast_type, c)
1728
1729 result[c] = cvals
~\Anaconda3\lib\site-packages\pandas\io\parsers.py in _cast_types(self, values, cast_type, column)
1823 array_type = cast_type.construct_array_type()
1824 try:
-> 1825 return array_type._from_sequence_of_strings(values, dtype=cast_type)
1826 except NotImplementedError:
1827 raise NotImplementedError(
~\Anaconda3\lib\site-packages\pandas\core\arrays\string_.py in _from_sequence_of_strings(cls, strings, dtype, copy)
199 @classmethod
200 def _from_sequence_of_strings(cls, strings, dtype=None, copy=False):
--> 201 return cls._from_sequence(strings, dtype=dtype, copy=copy)
202
203 def __arrow_array__(self, type=None):
~\Anaconda3\lib\site-packages\pandas\core\arrays\string_.py in _from_sequence(cls, scalars, dtype, copy)
195 result[na_values] = StringDtype.na_value
196
--> 197 return cls(result)
198
199 @classmethod
~\Anaconda3\lib\site-packages\pandas\core\arrays\string_.py in __init__(self, values, copy)
164 self._dtype = StringDtype()
165 if not skip_validation:
--> 166 self._validate()
167
168 def _validate(self):
~\Anaconda3\lib\site-packages\pandas\core\arrays\string_.py in _validate(self)
169 """Validate that we only store NA or strings."""
170 if len(self._ndarray) and not lib.is_string_array(self._ndarray, skipna=True):
--> 171 raise ValueError("StringArray requires a sequence of strings or pandas.NA")
172 if self._ndarray.dtype != "object":
173 raise ValueError(
ValueError: StringArray requires a sequence of strings or pandas.NA
これは、pandasがそれを読んでいるときに、列を文字列dtypeに変換しているためです。日付形式がこれを破った理由がわかりません。
現在Pandas 1.0.1を使用しています
どんな情報でも大歓迎です。
必要に応じて詳細をお知らせします。
ドキュメントによると Pandas doc :
新しいdf.astype()
メソッドは、str
と"string"
の両方で機能します
違いは次のとおりです。"string"
を使用すると、数値を含めることができないStringArrayに変換しようとします。
str
では、以前と同様に機能するオブジェクトタイプとして処理されます。
日時列のdtype宣言を'col1':'string'
から'col1':str
に変更します。
この動作は、pandas 1.0。