web-dev-qa-db-ja.com

pandasデータフレーム内の単語の頻度を数える

次のような表があります。

      URN                   Firm_Name
0  104472               R.X. Yah & Co
1  104873        Big Building Society
2  109986          St James's Society
3  114058  The Kensington Society Ltd
4  113438      MMV Oil Associates Ltd

そして、以下のような出力を得るために、Firm_Name列内のすべての単語の頻度をカウントしたいと思います。

enter image description here

私は次のコードを試しました:

import pandas as pd
import nltk
data = pd.read_csv("X:\Firm_Data.csv")
top_N = 20
Word_dist = nltk.FreqDist(data['Firm_Name'])
print('All frequencies')
print('='*60)
rslt=pd.DataFrame(Word_dist.most_common(top_N),columns=['Word','Frequency'])

print(rslt)
print ('='*60)

ただし、次のコードは一意のワードカウントを生成しません。

15
J Reza

IIUIC、value_counts()を使用

In [3361]: df.Firm_Name.str.split(expand=True).stack().value_counts()
Out[3361]:
Society       3
Ltd           2
James's       1
R.X.          1
Yah           1
Associates    1
St            1
Kensington    1
MMV           1
Big           1
&             1
The           1
Co            1
Oil           1
Building      1
dtype: int64

または、

pd.Series(np.concatenate([x.split() for x in df.Firm_Name])).value_counts()

または、

pd.Series(' '.join(df.Firm_Name).split()).value_counts()

上位Nの場合、たとえば3

In [3379]: pd.Series(' '.join(df.Firm_Name).split()).value_counts()[:3]
Out[3379]:
Society    3
Ltd        2
James's    1
dtype: int64

詳細

In [3380]: df
Out[3380]:
      URN                   Firm_Name
0  104472               R.X. Yah & Co
1  104873        Big Building Society
2  109986          St James's Society
3  114058  The Kensington Society Ltd
4  113438      MMV Oil Associates Ltd
37
Zero

str.cat with lower 最初にすべての値を1つのstringに連結し、次に Word_tokenize そして最後にソリューションを使用します:

top_N = 4
#if not necessary all lower
a = data['Firm_Name'].str.lower().str.cat(sep=' ')
words = nltk.tokenize.Word_tokenize(a)
Word_dist = nltk.FreqDist(words)
print (Word_dist)
<FreqDist with 17 samples and 20 outcomes>

rslt = pd.DataFrame(Word_dist.most_common(top_N),
                    columns=['Word', 'Frequency'])
print(rslt)
      Word  Frequency
0  society          3
1      ltd          2
2      the          1
3       co          1

必要に応じてlowerを削除することもできます。

top_N = 4
a = data['Firm_Name'].str.cat(sep=' ')
words = nltk.tokenize.Word_tokenize(a)
Word_dist = nltk.FreqDist(words)
rslt = pd.DataFrame(Word_dist.most_common(top_N),
                    columns=['Word', 'Frequency'])
print(rslt)
         Word  Frequency
0     Society          3
1         Ltd          2
2         MMV          1
3  Kensington          1
5
jezrael