web-dev-qa-db-ja.com

Pandasマージのパフォーマンスを向上させる

他の投稿が示唆しているように、私は特にPands Mergeのパフォーマンス問題を抱えていませんが、データセットに対して多くのマージを行う多くのメソッドがあるクラスを持っています。

クラスには約10のグループ化と約15のマージがあります。 groupbyはかなり高速ですが、クラスの合計実行時間1.5秒のうち、15回のマージ呼び出しでは約0.7秒かかります。

これらのマージ呼び出しのパフォーマンスを高速化したいと思います。約4000回の反復があるため、1回の反復で全体で0.5秒節約すると、全体的なパフォーマンスが約30分低下します。これは素晴らしいことです。

私が試すべき提案はありますか?私が試した:Cython Numba、そしてNumbaの方が遅い。

ありがとう

編集1:サンプルコードスニペットの追加:私のマージステートメント:

tmpDf = pd.merge(self.data, t1, on='APPT_NBR', how='left')
tmp = tmpDf

tmpDf = pd.merge(tmp, t2, on='APPT_NBR', how='left')
tmp = tmpDf

tmpDf = pd.merge(tmp, t3, on='APPT_NBR', how='left')
tmp = tmpDf

tmpDf = pd.merge(tmp, t4, on='APPT_NBR', how='left')
tmp = tmpDf

tmpDf = pd.merge(tmp, t5, on='APPT_NBR', how='left')

そして、Joinを実装することで、次の飽和状態を組み込みます。

dat = self.data.set_index('APPT_NBR')

t1.set_index('APPT_NBR', inplace=True)
t2.set_index('APPT_NBR', inplace=True)
t3.set_index('APPT_NBR', inplace=True)
t4.set_index('APPT_NBR', inplace=True)
t5.set_index('APPT_NBR', inplace=True)

tmpDf = dat.join(t1, how='left')
tmpDf = tmpDf.join(t2, how='left')
tmpDf = tmpDf.join(t3, how='left')
tmpDf = tmpDf.join(t4, how='left')
tmpDf = tmpDf.join(t5, how='left')

tmpDf.reset_index(inplace=True)

すべてが次の名前の関数の一部であることに注意してください:def merge_earlier_created_values(self):

そして、私がフォローしてprofilehooksからtimedcallをしたとき:

@timedcall(immediate=True)
def merge_earlier_created_values(self):

次の結果が得られます。

そのメソッドのプロファイリングの結果は次のようになります。

@profile(immediate=True)
def merge_earlier_created_values(self):

Mergeを使用した関数のプロファイリングは次のとおりです。

*** PROFILER RESULTS ***
merge_earlier_created_values (E:\Projects\Predictive Inbound Cartoon     Estimation-MLO\Python\CodeToSubmit\helpers\get_prev_data_by_date.py:122)
function called 1 times

     71665 function calls (70588 primitive calls) in 0.524 seconds

Ordered by: cumulative time, internal time, call count
List reduced from 563 to 40 due to restriction <40>

ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    1    0.012    0.012    0.524    0.524 get_prev_data_by_date.py:122(merge_earlier_created_values)
   14    0.000    0.000    0.285    0.020 generic.py:1901(_update_inplace)
   14    0.000    0.000    0.285    0.020 generic.py:1402(_maybe_update_cacher)
   19    0.000    0.000    0.284    0.015 generic.py:1492(_check_setitem_copy)
    7    0.283    0.040    0.283    0.040 {built-in method gc.collect}
   15    0.000    0.000    0.181    0.012 generic.py:1842(drop)
   10    0.000    0.000    0.153    0.015 merge.py:26(merge)
   10    0.000    0.000    0.140    0.014 merge.py:201(get_result)
  8/4    0.000    0.000    0.126    0.031 decorators.py:65(wrapper)
    4    0.000    0.000    0.126    0.031 frame.py:3028(drop_duplicates)
    1    0.000    0.000    0.102    0.102 get_prev_data_by_date.py:264(recreate_previous_cartons)
    1    0.000    0.000    0.101    0.101 get_prev_data_by_date.py:231(recreate_previous_appt_scheduled_date)
    1    0.000    0.000    0.098    0.098 get_prev_data_by_date.py:360(recreate_previous_freight_type)
   10    0.000    0.000    0.092    0.009 internals.py:4455(concatenate_block_managers)
   10    0.001    0.000    0.088    0.009 internals.py:4471(<listcomp>)
  120    0.001    0.000    0.084    0.001 internals.py:4559(concatenate_join_units)
  266    0.004    0.000    0.067    0.000 common.py:733(take_nd)
  120    0.000    0.000    0.061    0.001 internals.py:4569(<listcomp>)
  120    0.003    0.000    0.061    0.001 internals.py:4814(get_reindexed_values)
    1    0.000    0.000    0.059    0.059 get_prev_data_by_date.py:295(recreate_previous_appt_status)
   10    0.000    0.000    0.038    0.004 merge.py:322(_get_join_info)
   10    0.001    0.000    0.036    0.004 merge.py:516(_get_join_indexers)
   25    0.001    0.000    0.024    0.001 merge.py:687(_factorize_keys)
   74    0.023    0.000    0.023    0.000 {pandas.algos.take_2d_axis1_object_object}
   50    0.022    0.000    0.022    0.000 {method 'factorize' of 'pandas.hashtable.Int64Factorizer' objects}
  120    0.003    0.000    0.022    0.000 internals.py:4479(get_empty_dtype_and_na)
   88    0.000    0.000    0.021    0.000 frame.py:1969(__getitem__)
    1    0.000    0.000    0.019    0.019 get_prev_data_by_date.py:328(recreate_previous_location_numbers)
   39    0.000    0.000    0.018    0.000 internals.py:3495(reindex_indexer)
  537    0.017    0.000    0.017    0.000 {built-in method numpy.core.multiarray.empty}
   15    0.000    0.000    0.017    0.001 ops.py:725(wrapper)
   15    0.000    0.000    0.015    0.001 frame.py:2011(_getitem_array)
   24    0.000    0.000    0.014    0.001 internals.py:3625(take)
   10    0.000    0.000    0.014    0.001 merge.py:157(__init__)
   10    0.000    0.000    0.014    0.001 merge.py:382(_get_merge_keys)
   15    0.008    0.001    0.013    0.001 ops.py:662(na_op)
  234    0.000    0.000    0.013    0.000 common.py:158(isnull)
  234    0.001    0.000    0.013    0.000 common.py:179(_isnull_new)
   15    0.000    0.000    0.012    0.001 generic.py:1609(take)
   20    0.000    0.000    0.012    0.001 generic.py:2191(reindex)

結合を使用したプロファイリングは次のとおりです。

65079 function calls (63990 primitive calls) in 0.550 seconds

Ordered by: cumulative time, internal time, call count
List reduced from 592 to 40 due to restriction <40>

ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    1    0.016    0.016    0.550    0.550 get_prev_data_by_date.py:122(merge_earlier_created_values)
   14    0.000    0.000    0.295    0.021 generic.py:1901(_update_inplace)
   14    0.000    0.000    0.295    0.021 generic.py:1402(_maybe_update_cacher)
   19    0.000    0.000    0.294    0.015 generic.py:1492(_check_setitem_copy)
    7    0.293    0.042    0.293    0.042 {built-in method gc.collect}
   10    0.000    0.000    0.173    0.017 generic.py:1842(drop)
   10    0.000    0.000    0.139    0.014 merge.py:26(merge)
  8/4    0.000    0.000    0.138    0.034 decorators.py:65(wrapper)
    4    0.000    0.000    0.138    0.034 frame.py:3028(drop_duplicates)
   10    0.000    0.000    0.132    0.013 merge.py:201(get_result)
    5    0.000    0.000    0.122    0.024 frame.py:4324(join)
    5    0.000    0.000    0.122    0.024 frame.py:4371(_join_compat)
    1    0.000    0.000    0.111    0.111 get_prev_data_by_date.py:264(recreate_previous_cartons)
    1    0.000    0.000    0.103    0.103 get_prev_data_by_date.py:231(recreate_previous_appt_scheduled_date)
    1    0.000    0.000    0.099    0.099 get_prev_data_by_date.py:360(recreate_previous_freight_type)
   10    0.000    0.000    0.093    0.009 internals.py:4455(concatenate_block_managers)
   10    0.001    0.000    0.089    0.009 internals.py:4471(<listcomp>)
  100    0.001    0.000    0.085    0.001 internals.py:4559(concatenate_join_units)
  205    0.003    0.000    0.068    0.000 common.py:733(take_nd)
  100    0.000    0.000    0.060    0.001 internals.py:4569(<listcomp>)
  100    0.001    0.000    0.060    0.001 internals.py:4814(get_reindexed_values)
    1    0.000    0.000    0.056    0.056 get_prev_data_by_date.py:295(recreate_previous_appt_status)
   10    0.000    0.000    0.033    0.003 merge.py:322(_get_join_info)
   52    0.031    0.001    0.031    0.001 {pandas.algos.take_2d_axis1_object_object}
    5    0.000    0.000    0.030    0.006 base.py:2329(join)
   37    0.001    0.000    0.027    0.001 internals.py:2754(apply)
    6    0.000    0.000    0.024    0.004 frame.py:2763(set_index)
    7    0.000    0.000    0.023    0.003 merge.py:516(_get_join_indexers)
    2    0.000    0.000    0.022    0.011 base.py:2483(_join_non_unique)
    7    0.000    0.000    0.021    0.003 generic.py:2950(copy)
    7    0.000    0.000    0.021    0.003 internals.py:3046(copy)
   84    0.000    0.000    0.020    0.000 frame.py:1969(__getitem__)
   19    0.001    0.000    0.019    0.001 merge.py:687(_factorize_keys)
  100    0.002    0.000    0.019    0.000 internals.py:4479(get_empty_dtype_and_na)
    1    0.000    0.000    0.018    0.018 get_prev_data_by_date.py:328(recreate_previous_location_numbers)
   15    0.000    0.000    0.017    0.001 ops.py:725(wrapper)
   34    0.001    0.000    0.017    0.000 internals.py:3495(reindex_indexer)
   83    0.004    0.000    0.016    0.000 internals.py:3211(_consolidate_inplace)
   68    0.015    0.000    0.015    0.000 {method 'copy' of 'numpy.ndarray' objects}
   15    0.000    0.000    0.015    0.001 frame.py:2011(_getitem_array)

ご覧のように、マージは結合よりも高速ですが、小さい値ですが、4000回を超える反復では、その小さい値は分単位で膨大な数になります。

ありがとう

14
Debasish Kanhar

マージ列のset_indexは実際にこれを高速化します。以下は、@ julien-marrec Answerのもう少し現実的なバージョンです。

import pandas as pd
import numpy as np
myids=np.random.choice(np.arange(10000000), size=1000000, replace=False)
df1 = pd.DataFrame(myids, columns=['A'])
df1['B'] = np.random.randint(0,1000,(1000000))
df2 = pd.DataFrame(np.random.permutation(myids), columns=['A2'])
df2['B2'] = np.random.randint(0,1000,(1000000))

%%timeit
    x = df1.merge(df2, how='left', left_on='A', right_on='A2')   
#1 loop, best of 3: 664 ms per loop

%%timeit  
    x = df1.set_index('A').join(df2.set_index('A2'), how='left') 
#1 loop, best of 3: 354 ms per loop

%%time 
    df1.set_index('A', inplace=True)
    df2.set_index('A2', inplace=True)
#Wall time: 16 ms

%%timeit
    x = df1.join(df2, how='left')  
#10 loops, best of 3: 80.4 ms per loop

結合する列の整数が両方のテーブルで同じ順序ではない場合でも、8倍の高速化が期待できます。

8
Reisepass

マージ列をインデックスとして設定し、mergeの代わりにdf1.join(df2)を使用することをお勧めします。

次に、プロファイリングを含むいくつかの例を示します。

In [1]:
import pandas as pd
import numpy as np
df1 = pd.DataFrame(np.arange(1000000), columns=['A'])
df1['B'] = np.random.randint(0,1000,(1000000))
df2 = pd.DataFrame(np.arange(1000000), columns=['A2'])
df2['B2'] = np.random.randint(0,1000,(1000000))

AとA2の通常の左マージは次のとおりです。

In [2]: %%timeit
        x = df1.merge(df2, how='left', left_on='A', right_on='A2')

1 loop, best of 3: 441 ms per loop

以下は、joinを使用した場合と同じです。

In [3]: %%timeit
        x = df1.set_index('A').join(df2.set_index('A2'), how='left')

1 loop, best of 3: 184 ms per loop

これで、ループの前にインデックスを設定できる場合は、時間の面での利益がはるかに大きくなります。

# Do this before looping
In [4]: %%time
df1.set_index('A', inplace=True)
df2.set_index('A2', inplace=True)

CPU times: user 9.78 ms, sys: 9.31 ms, total: 19.1 ms
Wall time: 16.8 ms

その後、ループでは、この場合は30倍高速なものが得られます。

In [5]: %%timeit
        x = df1.join(df2, how='left')
100 loops, best of 3: 14.3 ms per loop
3
Julien Marrec