web-dev-qa-db-ja.com

Pandas DataFrameを列の値で分割

DataFrameを持つSalesがあります。

Sales値に基づいて2つに分割するにはどうすればよいですか?

最初のDataFrameには'Sales' < sのデータがあり、2番目には'Sales' >= sのデータがあります

45

boolean indexing を使用できます。

df = pd.DataFrame({'Sales':[10,20,30,40,50], 'A':[3,4,7,6,1]})
print (df)
   A  Sales
0  3     10
1  4     20
2  7     30
3  6     40
4  1     50

s = 30

df1 = df[df['Sales'] >= s]
print (df1)
   A  Sales
2  7     30
3  6     40
4  1     50

df2 = df[df['Sales'] < s]
print (df2)
   A  Sales
0  3     10
1  4     20

~によってmaskを反転することもできます。

mask = df['Sales'] >= s
df1 = df[mask]
df2 = df[~mask]
print (df1)
   A  Sales
2  7     30
3  6     40
4  1     50

print (df2)
   A  Sales
0  3     10
1  4     20

print (mask)
0    False
1    False
2     True
3     True
4     True
Name: Sales, dtype: bool

print (~mask)
0     True
1     True
2    False
3    False
4    False
Name: Sales, dtype: bool
62
jezrael

groupbyを使用すると、次のような2つのデータフレームに分割できます。

In [1047]: df1, df2 = [x for _, x in df.groupby(df['Sales'] < 30)]

In [1048]: df1
Out[1048]:
   A  Sales
2  7     30
3  6     40
4  1     50

In [1049]: df2
Out[1049]:
   A  Sales
0  3     10
1  4     20
34
Zero