1列のデータを使用したパンダのOHLC再サンプリングは、たとえば次のデータフレームで完全に機能することを理解しています。
>>df
ctime openbid
1443654000 1.11700
1443654060 1.11700
...
df['ctime'] = pd.to_datetime(df['ctime'], unit='s')
df = df.set_index('ctime')
df.resample('1H', how='ohlc', axis=0, fill_method='bfill')
>>>
open high low close
ctime
2015-09-30 23:00:00 1.11700 1.11700 1.11687 1.11697
2015-09-30 24:00:00 1.11700 1.11712 1.11697 1.11697
...
しかし、データが既にOHLC形式である場合はどうすればよいですか? APIのOHLCメソッドを収集できることから、列ごとにOHLCスライスを計算します。したがって、データが次の形式の場合:
ctime openbid highbid lowbid closebid
0 1443654000 1.11700 1.11700 1.11687 1.11697
1 1443654060 1.11700 1.11712 1.11697 1.11697
2 1443654120 1.11701 1.11708 1.11699 1.11708
再サンプリングしようとすると、次のように各列のOHLCが取得されます。
openbid highbid \
open high low close open high
ctime
2015-09-30 23:00:00 1.11700 1.11700 1.11700 1.11700 1.11700 1.11712
2015-09-30 23:01:00 1.11701 1.11701 1.11701 1.11701 1.11708 1.11708
...
lowbid \
low close open high low close
ctime
2015-09-30 23:00:00 1.11700 1.11712 1.11687 1.11697 1.11687 1.11697
2015-09-30 23:01:00 1.11708 1.11708 1.11699 1.11699 1.11699 1.11699
...
closebid
open high low close
ctime
2015-09-30 23:00:00 1.11697 1.11697 1.11697 1.11697
2015-09-30 23:01:00 1.11708 1.11708 1.11708 1.11708
pandas manual?
ありがとう。
ps、この答えがあります- OHLC株式データをpython and pandas で別の時間枠に変換します-しかし、それは4年前だったので、いくつかの進歩。
これはリンクした答えに似ていますが、ラムダではなく最適化された集計を使用するため、少しクリーンで高速です。
resample(...).agg(...)
構文にはpandas version 0.18.0
。
In [101]: df.resample('1H').agg({'openbid': 'first',
'highbid': 'max',
'lowbid': 'min',
'closebid': 'last'})
Out[101]:
lowbid highbid closebid openbid
ctime
2015-09-30 23:00:00 1.11687 1.11712 1.11708 1.117
次のように、新しいバージョンのパンダで行の順序を維持するには、OrderedDictを使用する必要があります。
import pandas as pd
from collections import OrderedDict
df['ctime'] = pd.to_datetime(df['ctime'], unit='s')
df = btceur.set_index('ctime')
df = df.resample('5Min').agg(
OrderedDict([
('open', 'first'),
('high', 'max'),
('low', 'min'),
('close', 'last'),
('volume', 'sum'),
])
)
これはうまくいくようです、
def ohlcVolume(x):
if len(x):
ohlc={ "open":x["open"][0],"high":max(x["high"]),"low":min(x["low"]),"close":x["close"][-1],"volume":sum(x["volume"])}
return pd.Series(ohlc)
daily=df.resample('1D').apply(ohlcVolume)
価格と金額の列を持つデータフレームを考える
def agg_ohlcv(x):
arr = x['price'].values
names = {
'low': min(arr) if len(arr) > 0 else np.nan,
'high': max(arr) if len(arr) > 0 else np.nan,
'open': arr[0] if len(arr) > 0 else np.nan,
'close': arr[-1] if len(arr) > 0 else np.nan,
'volume': sum(x['amount'].values) if len(x['amount'].values) > 0 else 0,
}
return pd.Series(names)
df = df.resample('1min').apply(agg_ohlcv)
df = df.ffill()