私はdfを持っています:
Value1 Value2 1 2 3
1 A 0 1 2
2 B 3 4 5
3 C 2 2 2
行と列の間でsumproductを実行したい12 3:
Value1 Value2 1 2 3 sumproduct
1 A 0 1 2 8 = 0*1 + 1*2 + 2*3
2 B 3 4 5 26 = 3*1 + 4*2 + 5*3
3 C 2 2 2 12 = 2*1 + 2*2 + 2*3
(df.values*df.columns.values).sum(1)
を試しましたが、最初にValue1
列とValue2
列を削除する必要があります。より良いアプローチはありますか?
どうもありがとう!
df = pd.DataFrame({'1': [0, 3, 2], '2': [1, 4, 2], '3': [2, 5, 2]})
df['sumproduct'] = df[1] * 1 + df[2] * 2 + df[3] * 3
一般的な場合の更新
valid_columns = [col for col in df.columns if col.isdigit()]
df['sumproduct'] = (df[valid_columns] * [int(x) for x in valid_columns]).sum(axis=1)
私がすること
df.iloc[:,2:].dot([1,2,3])
Out[239]:
0 8
1 26
2 12
dtype: int64
自動化するには
s=df.iloc[:,2:]
s.dot(s.columns.astype(int))
Out[242]:
0 8
1 26
2 12
dtype: int64
arr = [0]*len(df)
for i, v in enumerate([c for c in df.columns if not isinstance(c,str)]):
arr = arr + df[v]*v
df['sumproduct'] = arr
あるいは:
cols = [c for c in df.columns if not isinstance(c, str)]
# or as @ilia
cols = pd.to_numeric(df.columns,errors='coerce').dropna()
df[cols].apply(lambda x: x*x.name).sum(axis='columns')
(df[['1','2','3']]*[1,2,3]).sum(axis=1)
出力:
0 8
1 26
2 12
更新:ユニバーサルアプローチ
col = pd.to_numeric(df.columns,errors='coer')
(df[df.columns[~pd.isnull(col)]]*col.dropna()).sum(axis=1)