Torchvisionがmathplotlibと相互作用して画像のグリッドを生成する方法を理解しようとしています。画像を生成して繰り返し表示するのは簡単です。
import torch
import torchvision
import matplotlib.pyplot as plt
w = torch.randn(10,3,640,640)
for i in range (0,10):
z = w[i]
plt.imshow(z.permute(1,2,0))
plt.show()
ただし、これらの画像をグリッドに表示するのは簡単ではないようです。
w = torch.randn(10,3,640,640)
grid = torchvision.utils.make_grid(w, nrow=5)
plt.imshow(grid)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-61-1601915e10f3> in <module>()
1 w = torch.randn(10,3,640,640)
2 grid = torchvision.utils.make_grid(w, nrow=5)
----> 3 plt.imshow(grid)
/anaconda3/lib/python3.6/site-packages/matplotlib/pyplot.py in imshow(X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, Origin, extent, shape, filternorm, filterrad, imlim, resample, url, hold, data, **kwargs)
3203 filternorm=filternorm, filterrad=filterrad,
3204 imlim=imlim, resample=resample, url=url, data=data,
-> 3205 **kwargs)
3206 finally:
3207 ax._hold = washold
/anaconda3/lib/python3.6/site-packages/matplotlib/__init__.py in inner(ax, *args, **kwargs)
1853 "the Matplotlib list!)" % (label_namer, func.__name__),
1854 RuntimeWarning, stacklevel=2)
-> 1855 return func(ax, *args, **kwargs)
1856
1857 inner.__doc__ = _add_data_doc(inner.__doc__,
/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py in imshow(self, X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, Origin, extent, shape, filternorm, filterrad, imlim, resample, url, **kwargs)
5485 resample=resample, **kwargs)
5486
-> 5487 im.set_data(X)
5488 im.set_alpha(alpha)
5489 if im.get_clip_path() is None:
/anaconda3/lib/python3.6/site-packages/matplotlib/image.py in set_data(self, A)
651 if not (self._A.ndim == 2
652 or self._A.ndim == 3 and self._A.shape[-1] in [3, 4]):
--> 653 raise TypeError("Invalid dimensions for image data")
654
655 if self._A.ndim == 3:
TypeError: Invalid dimensions for image data
PyTorchのドキュメントではwが正しい形状であると示されていますが、Pythonはそうではないということです。だから、テンソルのインデックスを置換しようとしました。
w = torch.randn(10,3,640,640)
grid = torchvision.utils.make_grid(w.permute(0,2,3,1), nrow=5)
plt.imshow(grid)
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-62-6f2dc6313e29> in <module>()
1 w = torch.randn(10,3,640,640)
----> 2 grid = torchvision.utils.make_grid(w.permute(0,2,3,1), nrow=5)
3 plt.imshow(grid)
/anaconda3/lib/python3.6/site-packages/torchvision-0.2.1-py3.6.Egg/torchvision/utils.py in make_grid(tensor, nrow, padding, normalize, range, scale_each, pad_value)
83 grid.narrow(1, y * height + padding, height - padding)\
84 .narrow(2, x * width + padding, width - padding)\
---> 85 .copy_(tensor[k])
86 k = k + 1
87 return grid
RuntimeError: The expanded size of the tensor (3) must match the existing size (640) at non-singleton dimension 0
ここで何が起こっていますか?ランダムに生成された画像の束をグリッドに配置して表示するにはどうすればよいですか?
コードに小さな間違いがあります。たとえば、次のコードは正常に機能します。
In [107]: import torchvision
# sample input
In [108]: batch_tensor = torch.randn(*(10, 3, 256, 256))
# make grid (2 rows and 5 columns)
In [109]: grid_img = torchvision.utils.make_grid(batch_tensor, nrow=5)
# check shape
In [110]: grid_img.shape
Out[110]: torch.Size([3, 518, 1292])
# reshape and plot
In [111]: plt.imshow(grid_img.permute(1, 2, 0))
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Out[111]: <matplotlib.image.AxesImage at 0x7f62081ef080>
出力は次のように表示されます。
最初にnumpyに変換する必要があります
import numpy as np
def show(img):
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1,2,0)), interpolation='nearest')
w = torch.randn(10,3,640,640)
grid = torchvision.utils.make_grid(w, nrow=10, padding=100)
show(grid)