web-dev-qa-db-ja.com

plt.imshowとtorchvision.utils.make_gridを使用してPyTorchで画像のグリッドを生成および表示するにはどうすればよいですか?

Torchvisionがmathplotlibと相互作用して画像のグリッドを生成する方法を理解しようとしています。画像を生成して繰り返し表示するのは簡単です。

import torch
import torchvision
import matplotlib.pyplot as plt

w = torch.randn(10,3,640,640)
for i in range (0,10):
    z = w[i]
    plt.imshow(z.permute(1,2,0))
    plt.show()

ただし、これらの画像をグリッドに表示するのは簡単ではないようです。

w = torch.randn(10,3,640,640)
grid = torchvision.utils.make_grid(w, nrow=5)
plt.imshow(grid)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-61-1601915e10f3> in <module>()
      1 w = torch.randn(10,3,640,640)
      2 grid = torchvision.utils.make_grid(w, nrow=5)
----> 3 plt.imshow(grid)

/anaconda3/lib/python3.6/site-packages/matplotlib/pyplot.py in imshow(X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, Origin, extent, shape, filternorm, filterrad, imlim, resample, url, hold, data, **kwargs)
   3203                         filternorm=filternorm, filterrad=filterrad,
   3204                         imlim=imlim, resample=resample, url=url, data=data,
-> 3205                         **kwargs)
   3206     finally:
   3207         ax._hold = washold

/anaconda3/lib/python3.6/site-packages/matplotlib/__init__.py in inner(ax, *args, **kwargs)
   1853                         "the Matplotlib list!)" % (label_namer, func.__name__),
   1854                         RuntimeWarning, stacklevel=2)
-> 1855             return func(ax, *args, **kwargs)
   1856 
   1857         inner.__doc__ = _add_data_doc(inner.__doc__,

/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py in imshow(self, X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, Origin, extent, shape, filternorm, filterrad, imlim, resample, url, **kwargs)
   5485                               resample=resample, **kwargs)
   5486 
-> 5487         im.set_data(X)
   5488         im.set_alpha(alpha)
   5489         if im.get_clip_path() is None:

/anaconda3/lib/python3.6/site-packages/matplotlib/image.py in set_data(self, A)
    651         if not (self._A.ndim == 2
    652                 or self._A.ndim == 3 and self._A.shape[-1] in [3, 4]):
--> 653             raise TypeError("Invalid dimensions for image data")
    654 
    655         if self._A.ndim == 3:

TypeError: Invalid dimensions for image data

PyTorchのドキュメントではwが正しい形状であると示されていますが、Pythonはそうではないということです。だから、テンソルのインデックスを置換しようとしました。

    w = torch.randn(10,3,640,640)
    grid = torchvision.utils.make_grid(w.permute(0,2,3,1), nrow=5)
    plt.imshow(grid)
---------------------------------------------------------------------------
    RuntimeError                              Traceback (most recent call last)
    <ipython-input-62-6f2dc6313e29> in <module>()
          1 w = torch.randn(10,3,640,640)
    ----> 2 grid = torchvision.utils.make_grid(w.permute(0,2,3,1), nrow=5)
          3 plt.imshow(grid)

    /anaconda3/lib/python3.6/site-packages/torchvision-0.2.1-py3.6.Egg/torchvision/utils.py in make_grid(tensor, nrow, padding, normalize, range, scale_each, pad_value)
         83             grid.narrow(1, y * height + padding, height - padding)\
         84                 .narrow(2, x * width + padding, width - padding)\
    ---> 85                 .copy_(tensor[k])
         86             k = k + 1
         87     return grid

    RuntimeError: The expanded size of the tensor (3) must match the existing size (640) at non-singleton dimension 0

ここで何が起こっていますか?ランダムに生成された画像の束をグリッドに配置して表示するにはどうすればよいですか?

5
user41626

コードに小さな間違いがあります。たとえば、次のコードは正常に機能します。

In [107]: import torchvision

# sample input
In [108]: batch_tensor = torch.randn(*(10, 3, 256, 256))

# make grid (2 rows and 5 columns)
In [109]: grid_img = torchvision.utils.make_grid(batch_tensor, nrow=5)

# check shape
In [110]: grid_img.shape
Out[110]: torch.Size([3, 518, 1292])

# reshape and plot
In [111]: plt.imshow(grid_img.permute(1, 2, 0))
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Out[111]: <matplotlib.image.AxesImage at 0x7f62081ef080>

出力は次のように表示されます。

torchvision_make_grid

7
kmario23

最初にnumpyに変換する必要があります

import numpy as np

def show(img):
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1,2,0)), interpolation='nearest')

w = torch.randn(10,3,640,640)
grid = torchvision.utils.make_grid(w, nrow=10, padding=100)
show(grid)
2
iacolippo