web-dev-qa-db-ja.com

pyodbcからpandasにデータを読み取ります

SQLデータベースにクエリを実行していて、データを処理するためにpandasを使用します。ただし、データの移動方法がわかりません。以下は入力と出力です。

import pyodbc
import pandas
from pandas import DataFrame

cnxn = pyodbc.connect(r'DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};DBQ=C:\users\bartogre\desktop\CorpRentalPivot1.accdb;UID="";PWD="";')
crsr = cnxn.cursor()
for table_name in crsr.tables(tableType='TABLE'):
    print(table_name)
cursor = cnxn.cursor()
sql = "Select sum(CYTM), sum(PYTM), BRAND From data Group By BRAND"
cursor.execute(sql)
for data in cursor.fetchall():
    print (data)

('C:\\users\\bartogre\\desktop\\CorpRentalPivot1.accdb', None, 'Data', 'TABLE', None)
('C:\\users\\bartogre\\desktop\\CorpRentalPivot1.accdb', None, 'SFDB', 'TABLE', None)
(Decimal('78071898.71'), Decimal('82192672.29'), 'A')
(Decimal('12120663.79'), Decimal('13278814.52'), 'B')
26
polonius11

より短く簡潔な答え

import pyodbc
import pandas
cnxn = pyodbc.connect(r'DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};'
                      r'DBQ=C:\users\bartogre\desktop\data.mdb;')
sql = "Select sum(CYTM), sum(PYTM), BRAND From data Group By BRAND"
data = pandas.read_sql(sql,cnxn)
70
Andres

別の高速な方法。 data = pd.read_sql(sql、cnxn)をご覧ください

import pyodbc
import pandas as pd
from pandas import DataFrame
from pandas.tools import plotting
from scipy import stats
import matplotlib.pyplot as plt
import seaborn as sns

cnxn = pyodbc.connect(r'DRIVER={Microsoft Access Driver (*.mdb, *.accdb)}; DBQ=C:\users\bartogre\desktop\data.mdb;UID="";PWD="";')
crsr = cnxn.cursor()
for table_name in crsr.tables(tableType='TABLE'):
    print(table_name)
cursor = cnxn.cursor()
sql = "Select *"
sql = sql + " From data"
print(sql)
cursor.execute(sql)
data = pd.read_sql(sql, cnxn)
9
polonius11

私はこれを考えすぎていました!

cnxn = pyodbc.connect(r'DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};DBQ=C:\users\bartogre\desktop\CorpRentalPivot1.accdb;UID="";PWD="";')
crsr = cnxn.cursor()
for table_name in crsr.tables(tableType='TABLE'):
    print(table_name)
cursor = cnxn.cursor()
sql = "Select sum(CYTM), sum(PYTM), BRAND From data Group By BRAND"
cursor.execute(sql)
data = cursor.fetchall()
print(data)
Data = pandas.DataFrame(data)
print(Data)
8
polonius11