web-dev-qa-db-ja.com

Pythonでツリーを実装するにはどうすればいいですか? JavaのようにPythonに組み込まれたデータ構造はありますか?

私は一般的な木を作ろうとしています。ツリーを実装するためにPythonに組み込まれたデータ構造はありますか?

150
vishnu

エニーツリー

私はお勧めします https://pypi.python.org/pypi/anytree (私は作者です)

from anytree import Node, RenderTree

udo = Node("Udo")
marc = Node("Marc", parent=udo)
lian = Node("Lian", parent=marc)
dan = Node("Dan", parent=udo)
jet = Node("Jet", parent=dan)
jan = Node("Jan", parent=dan)
joe = Node("Joe", parent=dan)

print(udo)
Node('/Udo')
print(joe)
Node('/Udo/Dan/Joe')

for pre, fill, node in RenderTree(udo):
    print("%s%s" % (pre, node.name))
Udo
├── Marc
│   └── Lian
└── Dan
    ├── Jet
    ├── Jan
    └── Joe

print(dan.children)
(Node('/Udo/Dan/Jet'), Node('/Udo/Dan/Jan'), Node('/Udo/Dan/Joe'))

特徴

anytree は強力なAPIも持っています。

  • 簡単なツリー作成
  • 単純なツリー修正
  • 事前順序木反復
  • ポストオーダーツリーの反復
  • 相対および絶対ノードパスを解決する
  • あるノードから別のノードへと歩く。
  • ツリーレンダリング(上記の例を参照)
  • ノード接続/接続解除
154
c0fec0de

Pythonには、Javaのように広範囲の「組み込み」データ構造はありません。しかし、Pythonは動的であるため、一般的なツリーは簡単に作成できます。たとえば、二分木は次のようになります。

class Tree:
    def __init__(self):
        self.left = None
        self.right = None
        self.data = None

あなたはこのようにそれを使うことができます:

root = Tree()
root.data = "root"
root.left = Tree()
root.left.data = "left"
root.right = Tree()
root.right.data = "right"
97
Greg Hewgill

総称ツリーは、ゼロ個以上の子を持つノードで、それぞれが適切な(ツリー)ノードです。それは二分木と同じではありません、それらはいくつかの用語を共有しますが、それらは異なるデータ構造です。

Pythonにはジェネリックツリーのための組み込みデータ構造はありませんが、クラスを使って簡単に実装できます。

class Tree(object):
    "Generic tree node."
    def __init__(self, name='root', children=None):
        self.name = name
        self.children = []
        if children is not None:
            for child in children:
                self.add_child(child)
    def __repr__(self):
        return self.name
    def add_child(self, node):
        assert isinstance(node, Tree)
        self.children.append(node)
#    *
#   /|\
#  1 2 +
#     / \
#    3   4
t = Tree('*', [Tree('1'),
               Tree('2'),
               Tree('+', [Tree('3'),
                          Tree('4')])])
39
ruda

あなたが試すことができます:

from collections import defaultdict
def tree(): return defaultdict(tree)
users = tree()
users['harold']['username'] = 'hrldcpr'
users['handler']['username'] = 'matthandlersux'

ここで示唆されるように: https://Gist.github.com/201225

35
Ib33X

ツリーは組み込まれていませんが、ListからNode型をサブクラス化してトラバーサルメソッドを書くことで簡単に構築できます。あなたがこれをするならば、私は 二等分 便利であるとわかりました。

PyPi には閲覧できるたくさんの実装があります。

私の記憶が正しければ、Python標準ライブラリには、.NET基本クラスライブラリには含まれていないのと同じ理由でツリーデータ構造が含まれていません。メモリの局所性が低下し、キャッシュミスが増えます。最近のプロセッサでは、大容量のメモリをキャッシュに入れるだけで通常は高速になり、「ポインタが豊富な」データ構造ではその利点がなくなります。

16
Justin R.
class Node:
    """
    Class Node
    """
    def __init__(self, value):
        self.left = None
        self.data = value
        self.right = None

class Tree:
    """
    Class tree will provide a tree as well as utility functions.
    """

    def createNode(self, data):
        """
        Utility function to create a node.
        """
        return Node(data)

    def insert(self, node , data):
        """
        Insert function will insert a node into tree.
        Duplicate keys are not allowed.
        """
        #if tree is empty , return a root node
        if node is None:
            return self.createNode(data)
        # if data is smaller than parent , insert it into left side
        if data < node.data:
            node.left = self.insert(node.left, data)
        Elif data > node.data:
            node.right = self.insert(node.right, data)

        return node


    def search(self, node, data):
        """
        Search function will search a node into tree.
        """
        # if root is None or root is the search data.
        if node is None or node.data == data:
            return node

        if node.data < data:
            return self.search(node.right, data)
        else:
            return self.search(node.left, data)



    def deleteNode(self,node,data):
        """
        Delete function will delete a node into tree.
        Not complete , may need some more scenarion that we can handle
        Now it is handling only leaf.
        """

        # Check if tree is empty.
        if node is None:
            return None

        # searching key into BST.
        if data < node.data:
            node.left = self.deleteNode(node.left, data)
        Elif data > node.data:
            node.right = self.deleteNode(node.right, data)
        else: # reach to the node that need to delete from BST.
            if node.left is None and node.right is None:
                del node
            if node.left == None:
                temp = node.right
                del node
                return  temp
            Elif node.right == None:
                temp = node.left
                del node
                return temp

        return node






    def traverseInorder(self, root):
        """
        traverse function will print all the node in the tree.
        """
        if root is not None:
            self.traverseInorder(root.left)
            print root.data
            self.traverseInorder(root.right)

    def traversePreorder(self, root):
        """
        traverse function will print all the node in the tree.
        """
        if root is not None:
            print root.data
            self.traversePreorder(root.left)
            self.traversePreorder(root.right)

    def traversePostorder(self, root):
        """
        traverse function will print all the node in the tree.
        """
        if root is not None:
            self.traversePreorder(root.left)
            self.traversePreorder(root.right)
            print root.data


def main():
    root = None
    tree = Tree()
    root = tree.insert(root, 10)
    print root
    tree.insert(root, 20)
    tree.insert(root, 30)
    tree.insert(root, 40)
    tree.insert(root, 70)
    tree.insert(root, 60)
    tree.insert(root, 80)

    print "Traverse Inorder"
    tree.traverseInorder(root)

    print "Traverse Preorder"
    tree.traversePreorder(root)

    print "Traverse Postorder"
    tree.traversePostorder(root)


if __== "__main__":
    main()
15
shivam garg

Greg Hewgillの答えは素晴らしいですが、もしあなたがレベルごとにより多くのノードを必要とするなら、あなたはそれらを作成するためにリスト|辞書を使うことができます。

class node(object):
    def __init__(self):
        self.name=None
        self.node=[]
        self.otherInfo = None
        self.prev=None
    def nex(self,child):
        "Gets a node by number"
        return self.node[child]
    def prev(self):
        return self.prev
    def goto(self,data):
        "Gets the node by name"
        for child in range(0,len(self.node)):
            if(self.node[child].name==data):
                return self.node[child]
    def add(self):
        node1=node()
        self.node.append(node1)
        node1.prev=self
        return node1

それでは、ルートを作成してビルドしてください。ex:

tree=node()  #create a node
tree.name="root" #name it root
tree.otherInfo="blue" #or what ever 
tree=tree.add() #add a node to the root
tree.name="node1" #name it

    root
   /
child1

tree=tree.add()
tree.name="grandchild1"

       root
      /
   child1
   /
grandchild1

tree=tree.prev()
tree=tree.add()
tree.name="gchild2"

          root
           /
        child1
        /    \
grandchild1 gchild2

tree=tree.prev()
tree=tree.prev()
tree=tree.add()
tree=tree.name="child2"

              root
             /   \
        child1  child2
       /     \
grandchild1 gchild2


tree=tree.prev()
tree=tree.goto("child1") or tree=tree.nex(0)
tree.name="changed"

              root
              /   \
         changed   child2
        /      \
  grandchild1  gchild2

これを機能させる方法を考え出すためには、これで十分なはずです。

9
Bruno

私は、ルートツリーを辞書{child:parent}として実装しました。たとえば、ルートノードが0の場合、ツリーは次のようになります。

tree={1:0, 2:0, 3:1, 4:2, 5:3}

この構造により、任意のノードからルートへのパスに沿って上向きに移動することが非常に簡単になりました。これは、私が取り組んでいた問題に関連していました。

9
paw
class Tree(dict):
    """A tree implementation using python's autovivification feature."""
    def __missing__(self, key):
        value = self[key] = type(self)()
        return value

    #cast a (nested) dict to a (nested) Tree class
    def __init__(self, data={}):
        for k, data in data.items():
            if isinstance(data, dict):
                self[k] = type(self)(data)
            else:
                self[k] = data

辞書として機能しますが、あなたが望むように多くのネストされた辞書を提供します。以下を試してください。

your_tree = Tree()

your_tree['a']['1']['x']  = '@'
your_tree['a']['1']['y']  = '#'
your_tree['a']['2']['x']  = '$'
your_tree['a']['3']       = '%'
your_tree['b']            = '*'

入れ子になった辞書を配信します...これは確かにツリーとして機能します。

{'a': {'1': {'x': '@', 'y': '#'}, '2': {'x': '$'}, '3': '%'}, 'b': '*'}

...すでに辞書がある場合は、各レベルを木にキャストします。

d = {'foo': {'amy': {'what': 'runs'} } }
tree = Tree(d)

print(d['foo']['amy']['what']) # returns 'runs'
d['foo']['amy']['when'] = 'now' # add new branch

このようにして、あなたは望むように各辞書レベルを編集/追加/削除し続けることができます。走査などのためのすべてのdictメソッドがまだ適用されます。

7
natbusa

入れ子になった辞書を使ってツリーを実装しました。それは非常に簡単で、そしてそれは私にとってはかなり大きいデータセットでうまくいきました。以下にサンプルを投稿しましたが、もっと詳しく見ることができます Google code

  def addBallotToTree(self, tree, ballotIndex, ballot=""):
    """Add one ballot to the tree.

    The root of the tree is a dictionary that has as keys the indicies of all 
    continuing and winning candidates.  For each candidate, the value is also
    a dictionary, and the keys of that dictionary include "n" and "bi".
    tree[c]["n"] is the number of ballots that rank candidate c first.
    tree[c]["bi"] is a list of ballot indices where the ballots rank c first.

    If candidate c is a winning candidate, then that portion of the tree is
    expanded to indicate the breakdown of the subsequently ranked candidates.
    In this situation, additional keys are added to the tree[c] dictionary
    corresponding to subsequently ranked candidates.
    tree[c]["n"] is the number of ballots that rank candidate c first.
    tree[c]["bi"] is a list of ballot indices where the ballots rank c first.
    tree[c][d]["n"] is the number of ballots that rank c first and d second.
    tree[c][d]["bi"] is a list of the corresponding ballot indices.

    Where the second ranked candidates is also a winner, then the tree is 
    expanded to the next level.  

    Losing candidates are ignored and treated as if they do not appear on the 
    ballots.  For example, tree[c][d]["n"] is the total number of ballots
    where candidate c is the first non-losing candidate, c is a winner, and
    d is the next non-losing candidate.  This will include the following
    ballots, where x represents a losing candidate:
    [c d]
    [x c d]
    [c x d]
    [x c x x d]

    During the count, the tree is dynamically updated as candidates change
    their status.  The parameter "tree" to this method may be the root of the
    tree or may be a sub-tree.
    """

    if ballot == "":
      # Add the complete ballot to the tree
      weight, ballot = self.b.getWeightedBallot(ballotIndex)
    else:
      # When ballot is not "", we are adding a truncated ballot to the tree,
      # because a higher-ranked candidate is a winner.
      weight = self.b.getWeight(ballotIndex)

    # Get the top choice among candidates still in the running
    # Note that we can't use Ballots.getTopChoiceFromWeightedBallot since
    # we are looking for the top choice over a truncated ballot.
    for c in ballot:
      if c in self.continuing | self.winners:
        break # c is the top choice so stop
    else:
      c = None # no candidates left on this ballot

    if c is None:
      # This will happen if the ballot contains only winning and losing
      # candidates.  The ballot index will not need to be transferred
      # again so it can be thrown away.
      return

    # Create space if necessary.
    if not tree.has_key(c):
      tree[c] = {}
      tree[c]["n"] = 0
      tree[c]["bi"] = []

    tree[c]["n"] += weight

    if c in self.winners:
      # Because candidate is a winner, a portion of the ballot goes to
      # the next candidate.  Pass on a truncated ballot so that the same
      # candidate doesn't get counted twice.
      i = ballot.index(c)
      ballot2 = ballot[i+1:]
      self.addBallotToTree(tree[c], ballotIndex, ballot2)
    else:
      # Candidate is in continuing so we stop here.
      tree[c]["bi"].append(ballotIndex)
6
gaefan

私は私のサイトでPython [3]ツリーの実装を公開しました: http://www.quesucede.com/page/show/id/python_3_tree_implementation

それが役に立つことを願って、

わかりました、これはコードです:

import uuid

def sanitize_id(id):
    return id.strip().replace(" ", "")

(_ADD, _DELETE, _INSERT) = range(3)
(_ROOT, _DEPTH, _WIDTH) = range(3)

class Node:

    def __init__(self, name, identifier=None, expanded=True):
        self.__identifier = (str(uuid.uuid1()) if identifier is None else
                sanitize_id(str(identifier)))
        self.name = name
        self.expanded = expanded
        self.__bpointer = None
        self.__fpointer = []

    @property
    def identifier(self):
        return self.__identifier

    @property
    def bpointer(self):
        return self.__bpointer

    @bpointer.setter
    def bpointer(self, value):
        if value is not None:
            self.__bpointer = sanitize_id(value)

    @property
    def fpointer(self):
        return self.__fpointer

    def update_fpointer(self, identifier, mode=_ADD):
        if mode is _ADD:
            self.__fpointer.append(sanitize_id(identifier))
        Elif mode is _DELETE:
            self.__fpointer.remove(sanitize_id(identifier))
        Elif mode is _INSERT:
            self.__fpointer = [sanitize_id(identifier)]

class Tree:

    def __init__(self):
        self.nodes = []

    def get_index(self, position):
        for index, node in enumerate(self.nodes):
            if node.identifier == position:
                break
        return index

    def create_node(self, name, identifier=None, parent=None):

        node = Node(name, identifier)
        self.nodes.append(node)
        self.__update_fpointer(parent, node.identifier, _ADD)
        node.bpointer = parent
        return node

    def show(self, position, level=_ROOT):
        queue = self[position].fpointer
        if level == _ROOT:
            print("{0} [{1}]".format(self[position].name,
                                     self[position].identifier))
        else:
            print("\t"*level, "{0} [{1}]".format(self[position].name,
                                                 self[position].identifier))
        if self[position].expanded:
            level += 1
            for element in queue:
                self.show(element, level)  # recursive call

    def expand_tree(self, position, mode=_DEPTH):
        # Python generator. Loosly based on an algorithm from 'Essential LISP' by
        # John R. Anderson, Albert T. Corbett, and Brian J. Reiser, page 239-241
        yield position
        queue = self[position].fpointer
        while queue:
            yield queue[0]
            expansion = self[queue[0]].fpointer
            if mode is _DEPTH:
                queue = expansion + queue[1:]  # depth-first
            Elif mode is _WIDTH:
                queue = queue[1:] + expansion  # width-first

    def is_branch(self, position):
        return self[position].fpointer

    def __update_fpointer(self, position, identifier, mode):
        if position is None:
            return
        else:
            self[position].update_fpointer(identifier, mode)

    def __update_bpointer(self, position, identifier):
        self[position].bpointer = identifier

    def __getitem__(self, key):
        return self.nodes[self.get_index(key)]

    def __setitem__(self, key, item):
        self.nodes[self.get_index(key)] = item

    def __len__(self):
        return len(self.nodes)

    def __contains__(self, identifier):
        return [node.identifier for node in self.nodes
                if node.identifier is identifier]

if __== "__main__":

    tree = Tree()
    tree.create_node("Harry", "harry")  # root node
    tree.create_node("Jane", "jane", parent = "harry")
    tree.create_node("Bill", "bill", parent = "harry")
    tree.create_node("Joe", "joe", parent = "jane")
    tree.create_node("Diane", "diane", parent = "jane")
    tree.create_node("George", "george", parent = "diane")
    tree.create_node("Mary", "mary", parent = "diane")
    tree.create_node("Jill", "jill", parent = "george")
    tree.create_node("Carol", "carol", parent = "jill")
    tree.create_node("Grace", "grace", parent = "bill")
    tree.create_node("Mark", "mark", parent = "jane")

    print("="*80)
    tree.show("harry")
    print("="*80)
    for node in tree.expand_tree("harry", mode=_WIDTH):
        print(node)
    print("="*80)
4
Brett Kromkamp

もっと簡単な方法が必要な場合、ツリーは再帰的にネストされたリストにすぎません(setはハッシュ可能ではないため)。

[root, [child_1, [[child_11, []], [child_12, []]], [child_2, []]]]

各枝が対になっている場所:[object、[children]]
そしてそれぞれの葉はペアです:[object、[]]

しかし、メソッドを持つクラスが必要な場合は、任意のツリーを使用できます。

2
Hugo Trentesaux

どのような操作が必要ですか?多くの場合、Pythonには辞書またはbisectモジュールを含むリストを使用した優れた解決策があります。

PyPI にはたくさんのたくさんのツリーの実装があります、そして多くのツリー型は純粋なPythonで自分自身を実装するのにはささいなことです。しかし、これはほとんど必要ありません。

0
Mike Graham

ツリーデータ構造を作成したい場合は、まずtreeElementオブジェクトを作成する必要があります。 treeElementオブジェクトを作成すると、ツリーの動作を決定できます。

これを行うには、TreeElementクラスを使用します。

class TreeElement (object):

def __init__(self):
    self.elementName = None
    self.element = []
    self.previous = None
    self.elementScore = None
    self.elementParent = None
    self.elementPath = []
    self.treeLevel = 0

def goto(self, data):
    for child in range(0, len(self.element)):
        if (self.element[child].elementName == data):
            return self.element[child]

def add(self):

    single_element = TreeElement()
    single_element.elementName = self.elementName
    single_element.previous = self.elementParent
    single_element.elementScore = self.elementScore
    single_element.elementPath = self.elementPath
    single_element.treeLevel = self.treeLevel

    self.element.append(single_element)

    return single_element

さて、この要素を使ってツリーを作成する必要があります。この例ではA *ツリーを使っています。

class AStarAgent(Agent):
# Initialization Function: Called one time when the game starts
def registerInitialState(self, state):
    return;

# GetAction Function: Called with every frame
def getAction(self, state):

    # Sorting function for the queue
    def sortByHeuristic(each_element):

        if each_element.elementScore:
            individual_score = each_element.elementScore[0][0] + each_element.treeLevel
        else:
            individual_score = admissibleHeuristic(each_element)

        return individual_score

    # check the game is over or not
    if state.isWin():
        print('Job is done')
        return Directions.STOP
    Elif state.isLose():
        print('you lost')
        return Directions.STOP

    # Create empty list for the next states
    astar_queue = []
    astar_leaf_queue = []
    astar_tree_level = 0
    parent_tree_level = 0

    # Create Tree from the give node element
    astar_tree = TreeElement()
    astar_tree.elementName = state
    astar_tree.treeLevel = astar_tree_level
    astar_tree = astar_tree.add()

    # Add first element into the queue
    astar_queue.append(astar_tree)

    # Traverse all the elements of the queue
    while astar_queue:

        # Sort the element from the queue
        if len(astar_queue) > 1:
            astar_queue.sort(key=lambda x: sortByHeuristic(x))

        # Get the first node from the queue
        astar_child_object = astar_queue.pop(0)
        astar_child_state = astar_child_object.elementName

        # get all legal actions for the current node
        current_actions = astar_child_state.getLegalPacmanActions()

        if current_actions:

            # get all the successor state for these actions
            for action in current_actions:

                # Get the successor of the current node
                next_state = astar_child_state.generatePacmanSuccessor(action)

                if next_state:

                    # evaluate the successor states using scoreEvaluation heuristic
                    element_scored = [(admissibleHeuristic(next_state), action)]

                    # Increase the level for the child
                    parent_tree_level = astar_tree.goto(astar_child_state)
                    if parent_tree_level:
                        astar_tree_level = parent_tree_level.treeLevel + 1
                    else:
                        astar_tree_level += 1

                    # create tree for the finding the data
                    astar_tree.elementName = next_state
                    astar_tree.elementParent = astar_child_state
                    astar_tree.elementScore = element_scored
                    astar_tree.elementPath.append(astar_child_state)
                    astar_tree.treeLevel = astar_tree_level
                    astar_object = astar_tree.add()

                    # If the state exists then add that to the queue
                    astar_queue.append(astar_object)

                else:
                    # Update the value leaf into the queue
                    astar_leaf_state = astar_tree.goto(astar_child_state)
                    astar_leaf_queue.append(astar_leaf_state)

オブジェクトに任意の要素を追加/削除することはできますが、構造体を相互作用させることができます。

0
MAULIK MODI

Bruno's answer に大まかに基づくもう1つのツリー実装。

class Node:
    def __init__(self):
        self.name: str = ''
        self.children: List[Node] = []
        self.parent: Node = self

    def __getitem__(self, i: int) -> 'Node':
        return self.children[i]

    def add_child(self):
        child = Node()
        self.children.append(child)
        child.parent = self
        return child

    def __str__(self) -> str:
        def _get_character(x, left, right) -> str:
            if x < left:
                return '/'
            Elif x >= right:
                return '\\'
            else:
                return '|'

        if len(self.children):
            children_lines: Sequence[List[str]] = list(map(lambda child: str(child).split('\n'), self.children))
            widths: Sequence[int] = list(map(lambda child_lines: len(child_lines[0]), children_lines))
            max_height: int = max(map(len, children_lines))
            total_width: int = sum(widths) + len(widths) - 1
            left: int = (total_width - len(self.name) + 1) // 2
            right: int = left + len(self.name)

            return '\n'.join((
                self.name.center(total_width),
                ' '.join(map(lambda width, position: _get_character(position - width // 2, left, right).center(width),
                             widths, accumulate(widths, add))),
                *map(
                    lambda row: ' '.join(map(
                        lambda child_lines: child_lines[row] if row < len(child_lines) else ' ' * len(child_lines[0]),
                        children_lines)),
                    range(max_height))))
        else:
            return self.name

そしてそれを使用する方法の例:

tree = Node()
tree.name = 'Root node'
tree.add_child()
tree[0].name = 'Child node 0'
tree.add_child()
tree[1].name = 'Child node 1'
tree.add_child()
tree[2].name = 'Child node 2'
tree[1].add_child()
tree[1][0].name = 'Grandchild 1.0'
tree[2].add_child()
tree[2][0].name = 'Grandchild 2.0'
tree[2].add_child()
tree[2][1].name = 'Grandchild 2.1'
print(tree)

どちらを出力する必要があります:

ルートノード
//\
子ノード0子ノード1子ノード2 
 |/\ 
孫1.0孫2.0孫2.1 
0
Solomon Ucko