web-dev-qa-db-ja.com

Pythonで凡例とAUCスコアを使用して1つのプロットに複数のROC曲線をプロットする方法は?

2つのモデルを作成しています。

モデル1

modelgb = GradientBoostingClassifier()
modelgb.fit(x_train,y_train)
predsgb = modelgb.predict_proba(x_test)[:,1]
metrics.roc_auc_score(y_test,predsgb, average='macro', sample_weight=None)

モデル2

model = LogisticRegression()
model = model.fit(x_train,y_train)
predslog = model.predict_proba(x_test)[:,1]
metrics.roc_auc_score(y_test,predslog, average='macro', sample_weight=None)

各モデルのAUCスコアの凡例とテキストを使用して、両方のROC曲線を1つのプロットにプロットするにはどうすればよいですか?

8
Learner_seeker

これをあなたのデータに合わせてみてください:

from sklearn import metrics
import numpy as np
import matplotlib.pyplot as plt

plt.figure(0).clf()

pred = np.random.Rand(1000)
label = np.random.randint(2, size=1000)
fpr, tpr, thresh = metrics.roc_curve(label, pred)
auc = metrics.roc_auc_score(label, pred)
plt.plot(fpr,tpr,label="data 1, auc="+str(auc))

pred = np.random.Rand(1000)
label = np.random.randint(2, size=1000)
fpr, tpr, thresh = metrics.roc_curve(label, pred)
auc = metrics.roc_auc_score(label, pred)
plt.plot(fpr,tpr,label="data 2, auc="+str(auc))

plt.legend(loc=0)
10
Julien

モデルをリストに追加するだけで、複数のROC曲線が1つのプロットにプロットされます。うまくいけば、これでうまくいきます!

from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import GradientBoostingClassifier
from sklearn import metrics
import matplotlib.pyplot as plt

plt.figure()

# Add the models to the list that you want to view on the ROC plot
models = [
{
    'label': 'Logistic Regression',
    'model': LogisticRegression(),
},
{
    'label': 'Gradient Boosting',
    'model': GradientBoostingClassifier(),
}
]

# Below for loop iterates through your models list
for m in models:
    model = m['model'] # select the model
    model.fit(x_train, y_train) # train the model
    y_pred=model.predict(x_test) # predict the test data
# Compute False postive rate, and True positive rate
    fpr, tpr, thresholds = metrics.roc_curve(y_test, model.predict_proba(x_test)[:,1])
# Calculate Area under the curve to display on the plot
    auc = metrics.roc_auc_score(y_test,model.predict(x_test))
# Now, plot the computed values
    plt.plot(fpr, tpr, label='%s ROC (area = %0.2f)' % (m['label'], auc))
# Custom settings for the plot 
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('1-Specificity(False Positive Rate)')
plt.ylabel('Sensitivity(True Positive Rate)')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()   # Display
3
Rudr