Pythonを使用して線形補間を実行したいと思います。
高さを補間したいgpsポイントの例は次のとおりです。
B = 54.4786674627
L = 17.0470721369
既知の座標と高さの値を持つ4つの隣接する点を使用する:
n = [(54.5, 17.041667, 31.993), (54.5, 17.083333, 31.911), (54.458333, 17.041667, 31.945), (54.458333, 17.083333, 31.866)]
z01 z11
z
z00 z10
そしてこれが私の原始的な試みです:
import math
z00 = n[0][2]
z01 = n[1][2]
z10 = n[2][2]
z11 = n[3][2]
c = 0.016667 #grid spacing
x0 = 56 #latitude of Origin of grid
y0 = 13 #longitude of Origin of grid
i = math.floor((L-y0)/c)
j = math.floor((B-x0)/c)
t = (B - x0)/c - j
z0 = (1-t)*z00 + t*z10
z1 = (1-t)*z01 + t*z11
s = (L-y0)/c - i
z = (1-s)*z0 + s*z1
z0およびz1
z01 z0 z11
z
z00 z1 z10
31.964が表示されますが、他のソフトウェアから31.961が表示されます。
私のスクリプトは正しいですか?
別のアプローチを提供できますか?
これは、再利用可能な関数です。 doctestsとデータ検証が含まれています。
def bilinear_interpolation(x, y, points):
'''Interpolate (x,y) from values associated with four points.
The four points are a list of four triplets: (x, y, value).
The four points can be in any order. They should form a rectangle.
>>> bilinear_interpolation(12, 5.5,
... [(10, 4, 100),
... (20, 4, 200),
... (10, 6, 150),
... (20, 6, 300)])
165.0
'''
# See formula at: http://en.wikipedia.org/wiki/Bilinear_interpolation
points = sorted(points) # order points by x, then by y
(x1, y1, q11), (_x1, y2, q12), (x2, _y1, q21), (_x2, _y2, q22) = points
if x1 != _x1 or x2 != _x2 or y1 != _y1 or y2 != _y2:
raise ValueError('points do not form a rectangle')
if not x1 <= x <= x2 or not y1 <= y <= y2:
raise ValueError('(x, y) not within the rectangle')
return (q11 * (x2 - x) * (y2 - y) +
q21 * (x - x1) * (y2 - y) +
q12 * (x2 - x) * (y - y1) +
q22 * (x - x1) * (y - y1)
) / ((x2 - x1) * (y2 - y1) + 0.0)
以下を追加することで、テストコードを実行できます。
if __name__ == '__main__':
import doctest
doctest.testmod()
データセットに対して補間を実行すると、以下が生成されます。
>>> n = [(54.5, 17.041667, 31.993),
(54.5, 17.083333, 31.911),
(54.458333, 17.041667, 31.945),
(54.458333, 17.083333, 31.866),
]
>>> bilinear_interpolation(54.4786674627, 17.0470721369, n)
31.95798688313631
これが大いに役立つかどうかはわかりませんが、scipyを使用して線形補間を実行すると、別の値が得られます。
>>> import numpy as np
>>> from scipy.interpolate import griddata
>>> n = np.array([(54.5, 17.041667, 31.993),
(54.5, 17.083333, 31.911),
(54.458333, 17.041667, 31.945),
(54.458333, 17.083333, 31.866)])
>>> griddata(n[:,0:2], n[:,2], [(54.4786674627, 17.0470721369)], method='linear')
array([ 31.95817681])
here からヒントを得て、次のスニペットを思いつきました。 APIは同じテーブルを何度も再利用できるように最適化されています。
from bisect import bisect_left
class BilinearInterpolation(object):
""" Bilinear interpolation. """
def __init__(self, x_index, y_index, values):
self.x_index = x_index
self.y_index = y_index
self.values = values
def __call__(self, x, y):
# local lookups
x_index, y_index, values = self.x_index, self.y_index, self.values
i = bisect_left(x_index, x) - 1
j = bisect_left(y_index, y) - 1
x1, x2 = x_index[i:i + 2]
y1, y2 = y_index[j:j + 2]
z11, z12 = values[j][i:i + 2]
z21, z22 = values[j + 1][i:i + 2]
return (z11 * (x2 - x) * (y2 - y) +
z21 * (x - x1) * (y2 - y) +
z12 * (x2 - x) * (y - y1) +
z22 * (x - x1) * (y - y1)) / ((x2 - x1) * (y2 - y1))
次のように使用できます。
table = BilinearInterpolation(
x_index=(54.458333, 54.5),
y_index=(17.041667, 17.083333),
values=((31.945, 31.866), (31.993, 31.911))
)
print(table(54.4786674627, 17.0470721369))
# 31.957986883136307
このバージョンにはエラーチェックがなく、インデックスの境界(またはそれ以降)で使用しようとすると問題が発生します。エラーチェックとオプションの外挿を含むコードの完全版については、 ここ を参照してください。
matplotlibのinterp関数 も参照できます。
floor
関数を実行するポイントは、通常、座標が2つの離散座標の間にある値を補間することです。ただし、最も近い点の実際の実際の座標値はすでにあるように見えるため、簡単に計算できます。
z00 = n[0][2]
z01 = n[1][2]
z10 = n[2][2]
z11 = n[3][2]
# Let's assume L is your x-coordinate and B is the Y-coordinate
dx = n[2][0] - n[0][0] # The x-gap between your sample points
dy = n[1][1] - n[0][1] # The Y-gap between your sample points
dx1 = (L - n[0][0]) / dx # How close is your point to the left?
dx2 = 1 - dx1 # How close is your point to the right?
dy1 = (B - n[0][1]) / dy # How close is your point to the bottom?
dy2 = 1 - dy1 # How close is your point to the top?
left = (z00 * dy1) + (z01 * dy2) # First interpolate along the y-axis
right = (z10 * dy1) + (z11 * dy2)
z = (left * dx1) + (right * dx2) # Then along the x-axis
例からの変換には少し誤ったロジックがあるかもしれませんが、その要点は、他の近傍よりも補間目標点にどれだけ近いかに基づいて各点に重みを付けることができるということです。
私は次の解決策を提案します:
def bilinear_interpolation(x, y, z01, z11, z00, z10):
def linear_interpolation(x, z0, z1):
return z0 * x + z1 * (1 - x)
return linear_interpolation(y, linear_interpolation(x, z01, z11),
linear_interpolation(x, z00, z10))