Pythonで次の文字列を変換する方法を見つける必要があります。
0.000 => 0
0 => 0
123.45000 => 123.45
0000 => 0
123.4506780 => 123.450678
など。 .rstrip( '0')。rstrip( '。')を試しましたが、入力が0または00の場合は機能しません。
何か案は?ありがとう!
更新精度を維持し、目に見えない値を処理するために一般化:
import decimal
import random
def format_number(num):
try:
dec = decimal.Decimal(num)
except:
return 'bad'
tup = dec.as_Tuple()
delta = len(tup.digits) + tup.exponent
digits = ''.join(str(d) for d in tup.digits)
if delta <= 0:
zeros = abs(tup.exponent) - len(tup.digits)
val = '0.' + ('0'*zeros) + digits
else:
val = digits[:delta] + ('0'*tup.exponent) + '.' + digits[delta:]
val = val.rstrip('0')
if val[-1] == '.':
val = val[:-1]
if tup.sign:
return '-' + val
return val
# test data
NUMS = '''
0.0000 0
0 0
123.45000 123.45
0000 0
123.4506780 123.450678
0.1 0.1
0.001 0.001
0.005000 0.005
.1234 0.1234
1.23e1 12.3
-123.456 -123.456
4.98e10 49800000000
4.9815135 4.9815135
4e30 4000000000000000000000000000000
-0.0000000000004 -0.0000000000004
-.4e-12 -0.0000000000004
-0.11112 -0.11112
1.3.4.5 bad
-1.2.3 bad
'''
for num, exp in [s.split() for s in NUMS.split('\n') if s]:
res = format_number(num)
print res
assert exp == res
出力:
0
0
123.45
0
123.450678
0.1
0.001
0.005
0.1234
12.3
-123.456
49800000000
4.9815135
4000000000000000000000000000000
-0.0000000000004
-0.0000000000004
-0.11112
bad
bad
必要に応じて format strings を使用できますが、フォーマット文字列にはデフォルトで独自のロジックがあるため、必要な精度を設定する必要がある場合があることに注意してください。 Jannebは 別の答え で17の精度を推奨しています。
'{:g}'.format(float(your_string_goes_here))
しかし、これについてもう少し考えた後、最も単純で最良の解決策は、文字列を2回キャストすることです( jathanismが示唆するように )。
str(float(your_string_goes_here))
編集:コメントのために説明を追加しました。
浮動小数点数の場合、文字列をfloat
にキャストするだけです。
_>>> float('123.4506780')
123.450678
_
ゼロ値の場合は、それらを整数にキャストするだけです。
_>>> int('0000')
0
_
印刷すると、数値は自動的に文字列に変換されます。これらを実際に文字列にする必要がある場合は、単にstr()
を使用して文字列にキャストバックすることができます。例:
_>>> str(float('123.4506780'))
'123.450678'
_
'%.17g' % float(mystr)
実際にやりたいことに応じて.
脚本:
def tidy_float(s):
"""Return tidied float representation.
Remove superflous leading/trailing zero digits.
Remove '.' if value is an integer.
Return '****' if float(s) fails.
"""
# float?
try:
f = float(s)
except ValueError:
return '****'
# int?
try:
i = int(s)
return str(i)
except ValueError:
pass
# scientific notation?
if 'e' in s or 'E' in s:
t = s.lstrip('0')
if t.startswith('.'): t = '0' + t
return t
# float with integral value (includes zero)?
i = int(f)
if i == f:
return str(i)
assert '.' in s
t = s.strip('0')
if t.startswith('.'): t = '0' + t
if t.endswith('.'): t += '0'
return t
if __name__ == "__main__":
# Each line has test string followed by expected output
tests = """
0.000 0
0 0
0000 0
0.4000 0.4
0.0081000 0.0081
103.45 103.45
103.4506700 103.45067
14500.0012 14500.0012
478000.89 478000.89
993.59.18 ****
12.5831.400 ****
.458 0.458
.48587000 0.48587
.0000 0
10000 10000
10000.000 10000
-10000 -10000
-10000.000 -10000
1.23e2 1.23e2
1.23e10 1.23e10
.123e10 0.123e10
""".splitlines()
for test in tests:
x = test.split()
if not x: continue
data, expected = x
actual = tidy_float(data)
print "data=%r exp=%r act=%r %s" % (
data, expected, actual, ["**FAIL**", ""][actual == expected])
出力(Python 2.7.1):
data='0.000' exp='0' act='0'
data='0' exp='0' act='0'
data='0000' exp='0' act='0'
data='0.4000' exp='0.4' act='0.4'
data='0.0081000' exp='0.0081' act='0.0081'
data='103.45' exp='103.45' act='103.45'
data='103.4506700' exp='103.45067' act='103.45067'
data='14500.0012' exp='14500.0012' act='14500.0012'
data='478000.89' exp='478000.89' act='478000.89'
data='993.59.18' exp='****' act='****'
data='12.5831.400' exp='****' act='****'
data='.458' exp='0.458' act='0.458'
data='.48587000' exp='0.48587' act='0.48587'
data='.0000' exp='0' act='0'
data='10000' exp='10000' act='10000'
data='10000.000' exp='10000' act='10000'
data='-10000' exp='-10000' act='-10000'
data='-10000.000' exp='-10000' act='-10000'
data='1.23e2' exp='1.23e2' act='1.23e2'
data='1.23e10' exp='1.23e10' act='1.23e10'
data='.123e10' exp='0.123e10' act='0.123e10'
_import re
regx=re.compile('(?<![\d.])'
'(?!\d*\.\d*\.)' # excludes certain string as not being numbers
'((\d|\.\d)([\d.])*?)' # the only matching group
'([0\.]*)'
'(?![\d.])')
regx.sub('\\1',ch)
_
。
John Machinは、10000と10000.000は10000ではなく1を生成すると言いました
_(?!(?<=0)\.)
_を使用して置換関数を修正しました
_import re
regx = re.compile('(?<![\d.])' '(?![1-9]\d*(?![\d.])|\d*\.\d*\.)'
'0*(?!(?<=0)\.)'
'([\d.]+?)' # the only group , which is kept
'\.?0*'
'(?![\d.])')
regx.sub('\\1',ch)
_
。
残りの欠点を修正するには['。0000'生成'。'、John Machinによって指摘され、'000078000'生成'78']、私は新しいアイデアに基づいて正規表現ビルドを書き直しました。それはもっと簡単です。正規表現は、すべてのタイプの数値を検出します。
このソリューションは、末尾のゼロだけでなく、先頭のゼロもカットします。このソリューションとJohn Machinのtidy_float()
、samplebiasのnumber_format()
、arussell84の'{:g}'.format()
との比較を次に示します。私の関数の結果(今回はすべて正しい)と他の結果にはいくつかの違いがあります:
_import re
def number_shaver(ch,
regx = re.compile('(?<![\d.])0*(?:'
'(\d+)\.?|\.(0)'
'|(\.\d+?)|(\d+\.\d+?)'
')0*(?![\d.])') ,
repl = lambda mat: mat.group(mat.lastindex)
if mat.lastindex!=3
else '0' + mat.group(3) ):
return regx.sub(repl,ch)
def tidy_float(s): # John Machin
"""Return tidied float representation.
Remove superflous leading/trailing zero digits.
Remove '.' if value is an integer.
Return '****' if float(s) fails.
"""
# float?
try:
f = float(s)
except ValueError:
return s
# int?
try:
i = int(s)
return str(i)
except ValueError:
pass
# scientific notation?
if 'e' in s or 'E' in s:
t = s.lstrip('0')
if t.startswith('.'): t = '0' + t
return t
# float with integral value (includes zero)?
i = int(f)
if i == f:
return str(i)
assert '.' in s
t = s.strip('0')
if t.startswith('.'): t = '0' + t
if t.endswith('.'): t += '0'
return t
def format_float(s): # arrussell84
return '{:g}'.format(float(s)) if s.count('.')<2 \
else "Can't treat"
import decimal
def format_number(num):
try:
dec = decimal.Decimal(num)
except:
return 'bad'
tup = dec.as_Tuple()
delta = len(tup.digits) + tup.exponent
digits = ''.join(str(d) for d in tup.digits)
if delta <= 0:
zeros = abs(tup.exponent) - len(tup.digits)
val = '0.' + ('0'*zeros) + digits
else:
val = digits[:delta] + ('0'*tup.exponent) + '.' + digits[delta:]
val = val.rstrip('0')
if val[-1] == '.':
val = val[:-1]
if tup.sign:
return '-' + val
return val
numbers = ['23456000', '23456000.', '23456000.000',
'00023456000', '000023456000.', '000023456000.000',
'10000', '10000.', '10000.000',
'00010000', '00010000.', '00010000.000',
'24', '24.', '24.000',
'00024', '00024.', '00024.000',
'8', '8.', '8.000',
'0008', '0008.', '0008.000',
'0', '00000', '0.', '000.',
'\n',
'0.0', '0.000', '000.0', '000.000', '.000000', '.0',
'\n',
'.00023456', '.00023456000', '.00503', '.00503000',
'.068', '.0680000', '.8', '.8000',
'.123456123456', '.123456123456000',
'.657', '.657000', '.45', '.4500000', '.7', '.70000',
'\n',
'0.0000023230000', '000.0000023230000',
'0.0081000', '0000.0081000',
'0.059000', '0000.059000',
'0.78987400000', '00000.78987400000',
'0.4400000', '00000.4400000',
'0.5000', '0000.5000',
'0.90', '000.90', '0.7', '000.7',
'\n',
'2.6', '00002.6', '00002.60000',
'4.71', '0004.71', '0004.7100',
'23.49', '00023.49', '00023.490000',
'103.45', '0000103.45', '0000103.45000',
'10003.45067', '000010003.45067', '000010003.4506700',
'15000.0012', '000015000.0012', '000015000.0012000',
'78000.89', '000078000.89', '000078000.89000',
'\n',
'.0457e10', '.0457000e10','00000.0457000e10',
'258e8', '2580000e4', '0000000002580000e4',
# notice the difference of exponents
'0.782e10', '0000.782e10', '0000.7820000e10',
'1.23E2', '0001.23E2', '0001.2300000E2',
'432e-102', '0000432e-102', '004320000e-106',
# notice the difference of exponents
'1.46e10', '0001.46e10', '0001.4600000e10',
'1.077e-300', '0001.077e-300', '0001.077000e-300',
'1.069e10', '0001.069e10', '0001.069000e10',
'105040.03e10', '000105040.03e10', '105040.0300e10',
'\n',
'..18000', '25..00', '36...77', '2..8',
'3.8..9', '.12500.', '12.51.400' ]
_
pat = '%18s%-15s%-15s%-15s%s' li = [pat%( 'tested number'、 'float_shaver'、 'tidy_float'、 "format_number()"、 "'{:g}' format() ")] li.extend(pat%(n、number_shaver(n)、tidy_float(n)、format_number(n)、format_float(n))if n!= '\ n' else '\ n' for n数で)
'\ n'.join(li)を印刷します
比較の結果:
_ tested number float_shaver tidy_float format_number() '{:g}'.format()
23456000 23456000 23456000 23456000 2.3456e+07
23456000. 23456000 23456000 23456000 2.3456e+07
23456000.000 23456000 23456000 23456000 2.3456e+07
00023456000 23456000 23456000 23456000 2.3456e+07
000023456000. 23456000 23456000 23456000 2.3456e+07
000023456000.000 23456000 23456000 23456000 2.3456e+07
10000 10000 10000 10000 10000
10000. 10000 10000 10000 10000
10000.000 10000 10000 10000 10000
00010000 10000 10000 10000 10000
00010000. 10000 10000 10000 10000
00010000.000 10000 10000 10000 10000
24 24 24 24 24
24. 24 24 24 24
24.000 24 24 24 24
00024 24 24 24 24
00024. 24 24 24 24
00024.000 24 24 24 24
8 8 8 8 8
8. 8 8 8 8
8.000 8 8 8 8
0008 8 8 8 8
0008. 8 8 8 8
0008.000 8 8 8 8
0 0 0 0 0
00000 0 0 0 0
0. 0 0 0 0
000. 0 0 0 0
0.0 0 0 0 0
0.000 0 0 0 0
000.0 0 0 0 0
000.000 0 0 0 0
.000000 0 0 0 0
.0 0 0 0 0
.00023456 0.00023456 0.00023456 0.00023456 0.00023456
.00023456000 0.00023456 0.00023456 0.00023456 0.00023456
.00503 0.00503 0.00503 0.00503 0.00503
.00503000 0.00503 0.00503 0.00503 0.00503
.068 0.068 0.068 0.068 0.068
.0680000 0.068 0.068 0.068 0.068
.8 0.8 0.8 0.8 0.8
.8000 0.8 0.8 0.8 0.8
.123456123456 0.123456123456 0.123456123456 0.123456123456 0.123456
.123456123456000 0.123456123456 0.123456123456 0.123456123456 0.123456
.657 0.657 0.657 0.657 0.657
.657000 0.657 0.657 0.657 0.657
.45 0.45 0.45 0.45 0.45
.4500000 0.45 0.45 0.45 0.45
.7 0.7 0.7 0.7 0.7
.70000 0.7 0.7 0.7 0.7
0.0000023230000 0.000002323 0.000002323 0.000002323 2.323e-06
000.0000023230000 0.000002323 0.000002323 0.000002323 2.323e-06
0.0081000 0.0081 0.0081 0.0081 0.0081
0000.0081000 0.0081 0.0081 0.0081 0.0081
0.059000 0.059 0.059 0.059 0.059
0000.059000 0.059 0.059 0.059 0.059
0.78987400000 0.789874 0.789874 0.789874 0.789874
00000.78987400000 0.789874 0.789874 0.789874 0.789874
0.4400000 0.44 0.44 0.44 0.44
00000.4400000 0.44 0.44 0.44 0.44
0.5000 0.5 0.5 0.5 0.5
0000.5000 0.5 0.5 0.5 0.5
0.90 0.9 0.9 0.9 0.9
000.90 0.9 0.9 0.9 0.9
0.7 0.7 0.7 0.7 0.7
000.7 0.7 0.7 0.7 0.7
2.6 2.6 2.6 2.6 2.6
00002.6 2.6 2.6 2.6 2.6
00002.60000 2.6 2.6 2.6 2.6
4.71 4.71 4.71 4.71 4.71
0004.71 4.71 4.71 4.71 4.71
0004.7100 4.71 4.71 4.71 4.71
23.49 23.49 23.49 23.49 23.49
00023.49 23.49 23.49 23.49 23.49
00023.490000 23.49 23.49 23.49 23.49
103.45 103.45 103.45 103.45 103.45
0000103.45 103.45 103.45 103.45 103.45
0000103.45000 103.45 103.45 103.45 103.45
10003.45067 10003.45067 10003.45067 10003.45067 10003.5
000010003.45067 10003.45067 10003.45067 10003.45067 10003.5
000010003.4506700 10003.45067 10003.45067 10003.45067 10003.5
15000.0012 15000.0012 15000.0012 15000.0012 15000
000015000.0012 15000.0012 15000.0012 15000.0012 15000
000015000.0012000 15000.0012 15000.0012 15000.0012 15000
78000.89 78000.89 78000.89 78000.89 78000.9
000078000.89 78000.89 78000.89 78000.89 78000.9
000078000.89000 78000.89 78000.89 78000.89 78000.9
.0457e10 0.0457e10 0.0457e10 457000000 4.57e+08
.0457000e10 0.0457e10 0.0457000e10 457000000 4.57e+08
00000.0457000e10 0.0457e10 0.0457000e10 457000000 4.57e+08
258e8 258e8 258e8 25800000000 2.58e+10
2580000e4 2580000e4 2580000e4 25800000000 2.58e+10
0000000002580000e4 2580000e4 2580000e4 25800000000 2.58e+10
0.782e10 0.782e10 0.782e10 7820000000 7.82e+09
0000.782e10 0.782e10 0.782e10 7820000000 7.82e+09
0000.7820000e10 0.782e10 0.7820000e10 7820000000 7.82e+09
1.23E2 1.23E2 1.23E2 123 123
0001.23E2 1.23E2 1.23E2 123 123
0001.2300000E2 1.23E2 1.2300000E2 123 123
432e-102 432e-102 432e-102 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000432 4.32e-100
0000432e-102 432e-102 432e-102 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000432 4.32e-100
004320000e-106 4320000e-106 4320000e-106 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000432 4.32e-100
1.46e10 1.46e10 1.46e10 14600000000 1.46e+10
0001.46e10 1.46e10 1.46e10 14600000000 1.46e+10
0001.4600000e10 1.46e10 1.4600000e10 14600000000 1.46e+10
1.077e-300 1.077e-300 1.077e-300 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001077 1.077e-300
0001.077e-300 1.077e-300 1.077e-300 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001077 1.077e-300
0001.077000e-300 1.077e-300 1.077000e-300 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001077 1.077e-300
1.069e10 1.069e10 1.069e10 10690000000 1.069e+10
0001.069e10 1.069e10 1.069e10 10690000000 1.069e+10
0001.069000e10 1.069e10 1.069000e10 10690000000 1.069e+10
105040.03e10 105040.03e10 105040.03e10 1050400300000000 1.0504e+15
000105040.03e10 105040.03e10 105040.03e10 1050400300000000 1.0504e+15
105040.0300e10 105040.03e10 105040.0300e10 1050400300000000 1.0504e+15
..18000 ..18000 ..18000 bad Can't treat
25..00 25..00 25..00 bad Can't treat
36...77 36...77 36...77 bad Can't treat
2..8 2..8 2..8 bad Can't treat
3.8..9 3.8..9 3.8..9 bad Can't treat
.12500. .12500. .12500. bad Can't treat
12.51.400 12.51.400 12.51.400 bad Can't treat
_
。
私のソリューションには2つの利点があると考えています。
正規表現と関数number_shave()は短い
number_shave()は、一度に1つの数値を処理するだけでなく、文字列内のすべての数値を検出して処理します。 John Machinとarrussel84のソリューションでは実行できない処理を次に示します。
コード:
_numbers = [['', '23456000', '23456000.', '23456000.000 \n',
'00023456000', '000023456000.', '000023456000.000 \n',
'10000', '10000.', '10000.000 \n',
'00010000', '00010000.', '00010000.000 \n',
'24', '24.', '24.000 \n',
'00024', '00024.', '00024.000 \n',
'8', '8.', '8.000 \n',
'0008', '0008.', '0008.000 \n',
'0', '00000', '0.', '000.' ],
['0.0', '0.000', '000.0', '000.000', '.000000', '.0'],
['.00023456', '.00023456000', '.00503', '.00503000 \n',
'.068', '.0680000', '.8', '.8000 \n',
'.123456123456', '.123456123456000 \n',
'.657', '.657000', '.45', '.4500000', '.7', '.70000'],
['0.0000023230000', '000.0000023230000 \n',
'0.0081000', '0000.0081000 \n',
'0.059000', '0000.059000 \n',
'0.78987400000', '00000.78987400000 \n',
'0.4400000', '00000.4400000 \n',
'0.5000', '0000.5000 \n',
'0.90', '000.90', '0.7', '000.7 '],
['2.6', '00002.6', '00002.60000 \n',
'4.71', '0004.71', '0004.7100 \n',
'23.49', '00023.49', '00023.490000 \n',
'103.45', '0000103.45', '0000103.45000 \n',
'10003.45067', '000010003.45067', '000010003.4506700 \n',
'15000.0012', '000015000.0012', '000015000.0012000 \n',
'78000.89', '000078000.89', '000078000.89000'],
['.0457e10', '.0457000e10 \n',
'0.782e10', '0000.782e10', '0000.7820000e10 \n',
'1.23E2', '0001.23E2', '0001.2300000E2 \n',
'1.46e10', '0001.46e10', '0001.4600000e10 \n',
'1.077e-456', '0001.077e-456', '0001.077000e-456 \n',
'1.069e10', '0001.069e10', '0001.069000e10 \n',
'105040.03e10', '000105040.03e10', '105040.03e10'],
['..18000', '25..00', '36...77', '2..8 \n',
'3.8..9', '.12500.', '12.51.400' ]]
import re
def number_shaver(ch,
regx = re.compile('(?<![\d.])0*(?:'
'(\d+)\.?|\.(0)'
'|(\.\d+?)|(\d+\.\d+?)'
')0*(?![\d.])') ,
repl = lambda mat: mat.group(mat.lastindex)
if mat.lastindex!=3
else '0' + mat.group(3) ):
return regx.sub(repl,ch)
for li in numbers:
one_string = ' --- '.join(li)
print one_string + '\n\n' + number_shaver(one_string) + \
'\n\n' + 3*'---------------------' + '\n'
_
複数の数値を含む文字列の処理の結果:
_ --- 23456000 --- 23456000. --- 23456000.000
--- 00023456000 --- 000023456000. --- 000023456000.000
--- 10000 --- 10000. --- 10000.000
--- 00010000 --- 00010000. --- 00010000.000
--- 24 --- 24. --- 24.000
--- 00024 --- 00024. --- 00024.000
--- 8 --- 8. --- 8.000
--- 0008 --- 0008. --- 0008.000
--- 0 --- 00000 --- 0. --- 000.
--- 23456000 --- 23456000 --- 23456000
--- 23456000 --- 23456000 --- 23456000
--- 10000 --- 10000 --- 10000
--- 10000 --- 10000 --- 10000
--- 24 --- 24 --- 24
--- 24 --- 24 --- 24
--- 8 --- 8 --- 8
--- 8 --- 8 --- 8
--- 0 --- 0 --- 0 --- 0
---------------------------------------------------------------
0.0 --- 0.000 --- 000.0 --- 000.000 --- .000000 --- .0
0 --- 0 --- 0 --- 0 --- 0 --- 0
---------------------------------------------------------------
.00023456 --- .00023456000 --- .00503 --- .00503000
--- .068 --- .0680000 --- .8 --- .8000
--- .123456123456 --- .123456123456000
--- .657 --- .657000 --- .45 --- .4500000 --- .7 --- .70000
0.00023456 --- 0.00023456 --- 0.00503 --- 0.00503
--- 0.068 --- 0.068 --- 0.8 --- 0.8
--- 0.123456123456 --- 0.123456123456
--- 0.657 --- 0.657 --- 0.45 --- 0.45 --- 0.7 --- 0.7
---------------------------------------------------------------
0.0000023230000 --- 000.0000023230000
--- 0.0081000 --- 0000.0081000
--- 0.059000 --- 0000.059000
--- 0.78987400000 --- 00000.78987400000
--- 0.4400000 --- 00000.4400000
--- 0.5000 --- 0000.5000
--- 0.90 --- 000.90 --- 0.7 --- 000.7
0.000002323 --- 0.000002323
--- 0.0081 --- 0.0081
--- 0.059 --- 0.059
--- 0.789874 --- 0.789874
--- 0.44 --- 0.44
--- 0.5 --- 0.5
--- 0.9 --- 0.9 --- 0.7 --- 0.7
---------------------------------------------------------------
2.6 --- 00002.6 --- 00002.60000
--- 4.71 --- 0004.71 --- 0004.7100
--- 23.49 --- 00023.49 --- 00023.490000
--- 103.45 --- 0000103.45 --- 0000103.45000
--- 10003.45067 --- 000010003.45067 --- 000010003.4506700
--- 15000.0012 --- 000015000.0012 --- 000015000.0012000
--- 78000.89 --- 000078000.89 --- 000078000.89000
2.6 --- 2.6 --- 2.6
--- 4.71 --- 4.71 --- 4.71
--- 23.49 --- 23.49 --- 23.49
--- 103.45 --- 103.45 --- 103.45
--- 10003.45067 --- 10003.45067 --- 10003.45067
--- 15000.0012 --- 15000.0012 --- 15000.0012
--- 78000.89 --- 78000.89 --- 78000.89
---------------------------------------------------------------
.0457e10 --- .0457000e10
--- 0.782e10 --- 0000.782e10 --- 0000.7820000e10
--- 1.23E2 --- 0001.23E2 --- 0001.2300000E2
--- 1.46e10 --- 0001.46e10 --- 0001.4600000e10
--- 1.077e-456 --- 0001.077e-456 --- 0001.077000e-456
--- 1.069e10 --- 0001.069e10 --- 0001.069000e10
--- 105040.03e10 --- 000105040.03e10 --- 105040.03e10
0.0457e10 --- 0.0457e10
--- 0.782e10 --- 0.782e10 --- 0.782e10
--- 1.23E2 --- 1.23E2 --- 1.23E2
--- 1.46e10 --- 1.46e10 --- 1.46e10
--- 1.077e-456 --- 1.077e-456 --- 1.077e-456
--- 1.069e10 --- 1.069e10 --- 1.069e10
--- 105040.03e10 --- 105040.03e10 --- 105040.03e10
---------------------------------------------------------------
..18000 --- 25..00 --- 36...77 --- 2..8
--- 3.8..9 --- .12500. --- 12.51.400
..18000 --- 25..00 --- 36...77 --- 2..8
--- 3.8..9 --- .12500. --- 12.51.400
---------------------------------------------------------------
_
。
その結果、正規表現を使用して、ストリング内のすべての数値を検索することもできます。希望しない場合は、ゼロを削除する必要はありません。
。
PS:正規表現とその機能を説明する他の回答をもっと見る
(すべてが1つの投稿だけになることを切望していた)
正規表現のパターンは4つのサブパターンを定義し、それぞれが特定のタイプの数値と一致します。正規表現が文字列の一部と一致するたびに、一致するサブパターンは1つだけなので、置換関数でmat.lastindexを使用できます。次のコードは、さまざまな数値に対するサブパターンの一致を示しています。
import re
def float_show(ch,
regx = re.compile(
'(?<![\d.])'
'0*' # potentiel heading zeros
'(?:'
'(\d+)\.?' # INTEGERS :
# ~ pure integers non-0 or 0
# 000450 , 136000 , 87 , 000 , 0
# ~ integer part non-0 + '.'
# 0044. , 4100.
# ~ integer part 0 + '.'
# 000. , 0.
# ~ integer part non-0 + '.' + fractional part 0:
# 000570.00 , 193.0 , 3.000
'|\.(0)' # SPECIAL CASE, 0 WITH FRACTIONAL PART :
# ~ integer part 0 + compulsory fractional part 0:
# 000.0, 0.000 , .0 , .00000
'|(\.\d+?)' # FLOATING POINT NUMBER
# ~ with integer part 0:
# 000.0890 , 0.52 , 0.1 , .077000 , .1400 , .0006010
'|(\d+\.\d+?)' # FLOATING POINT NUMBER
# ~ with integer part non-0:
# 0024000.013000 , 145.0235 , 3.00058
')'
'0*' # potential tailing zeros
'(?![\d.])'),
repl = lambda mat: mat.group(mat.lastindex)
if mat.lastindex!=3
else '0' + mat.group(3) ):
mat = regx.search(ch)
if mat:
return (ch,regx.sub(repl,ch),repr(mat.groups()))
else:
return (ch,'No match','No groups')
numbers = ['23456000', '23456000.', '23456000.000',
'00023456000', '000023456000.', '000023456000.000',
'10000', '10000.', '10000.000',
'00010000', '00010000.', '00010000.000',
'24', '24.', '24.000',
'00024', '00024.', '00024.000',
'8', '8.', '8.000',
'0008', '0008.', '0008.000',
'0', '00000', '0.', '000.',
'\n',
'0.0', '0.000', '000.0', '000.000', '.000000', '.0',
'\n',
'.00023456', '.00023456000', '.00503', '.00503000',
'.068', '.0680000', '.8', '.8000',
'.123456123456', '.123456123456000',
'.657', '.657000', '.45', '.4500000', '.7', '.70000',
'\n',
'0.0000023230000', '000.0000023230000',
'0.0081000', '0000.0081000',
'0.059000', '0000.059000',
'0.78987400000', '00000.78987400000',
'0.4400000', '00000.4400000',
'0.5000', '0000.5000',
'0.90', '000.90', '0.7', '000.7',
'\n',
'2.6', '00002.6', '00002.60000',
'4.71', '0004.71', '0004.7100',
'23.49', '00023.49', '00023.490000',
'103.45', '0000103.45', '0000103.45000',
'10003.45067', '000010003.45067', '000010003.4506700',
'15000.0012', '000015000.0012', '000015000.0012000',
'78000.89', '000078000.89', '000078000.89000',
'\n',
'.0457e10', '.0457000e10',
'0.782e10', '0000.782e10', '0000.7820000e10',
'1.23E2', '0001.23E2', '0001.2300000E2',
'1.46e10', '0001.46e10', '0001.4600000e10',
'1.077e-456', '0001.077e-456', '0001.077000e-456',
'1.069e10', '0001.069e10', '0001.069000e10',
'105040.03e10', '000105040.03e10', '105040.0300e10',
'\n',
'..18000', '25..00', '36...77', '2..8',
'3.8..9', '.12500.', '12.51.400' ]
pat = '%20s %-16s %s'
li = [pat % ('tested number ',' shaved float',' regx.search(number).groups()')]
li.extend(pat % float_show(ch) if ch!='\n' else '\n' for ch in numbers)
print '\n'.join(li)
示す
tested number shaved float regx.search(number).groups()
23456000 23456000 ('23456000', None, None, None)
23456000. 23456000 ('23456000', None, None, None)
23456000.000 23456000 ('23456000', None, None, None)
00023456000 23456000 ('23456000', None, None, None)
000023456000. 23456000 ('23456000', None, None, None)
000023456000.000 23456000 ('23456000', None, None, None)
10000 10000 ('10000', None, None, None)
10000. 10000 ('10000', None, None, None)
10000.000 10000 ('10000', None, None, None)
00010000 10000 ('10000', None, None, None)
00010000. 10000 ('10000', None, None, None)
00010000.000 10000 ('10000', None, None, None)
24 24 ('24', None, None, None)
24. 24 ('24', None, None, None)
24.000 24 ('24', None, None, None)
00024 24 ('24', None, None, None)
00024. 24 ('24', None, None, None)
00024.000 24 ('24', None, None, None)
8 8 ('8', None, None, None)
8. 8 ('8', None, None, None)
8.000 8 ('8', None, None, None)
0008 8 ('8', None, None, None)
0008. 8 ('8', None, None, None)
0008.000 8 ('8', None, None, None)
0 0 ('0', None, None, None)
00000 0 ('0', None, None, None)
0. 0 ('0', None, None, None)
000. 0 ('0', None, None, None)
0.0 0 (None, '0', None, None)
0.000 0 (None, '0', None, None)
000.0 0 (None, '0', None, None)
000.000 0 (None, '0', None, None)
.000000 0 (None, '0', None, None)
.0 0 (None, '0', None, None)
.00023456 0.00023456 (None, None, '.00023456', None)
.00023456000 0.00023456 (None, None, '.00023456', None)
.00503 0.00503 (None, None, '.00503', None)
.00503000 0.00503 (None, None, '.00503', None)
.068 0.068 (None, None, '.068', None)
.0680000 0.068 (None, None, '.068', None)
.8 0.8 (None, None, '.8', None)
.8000 0.8 (None, None, '.8', None)
.123456123456 0.123456123456 (None, None, '.123456123456', None)
.123456123456000 0.123456123456 (None, None, '.123456123456', None)
.657 0.657 (None, None, '.657', None)
.657000 0.657 (None, None, '.657', None)
.45 0.45 (None, None, '.45', None)
.4500000 0.45 (None, None, '.45', None)
.7 0.7 (None, None, '.7', None)
.70000 0.7 (None, None, '.7', None)
0.0000023230000 0.000002323 (None, None, '.000002323', None)
000.0000023230000 0.000002323 (None, None, '.000002323', None)
0.0081000 0.0081 (None, None, '.0081', None)
0000.0081000 0.0081 (None, None, '.0081', None)
0.059000 0.059 (None, None, '.059', None)
0000.059000 0.059 (None, None, '.059', None)
0.78987400000 0.789874 (None, None, '.789874', None)
00000.78987400000 0.789874 (None, None, '.789874', None)
0.4400000 0.44 (None, None, '.44', None)
00000.4400000 0.44 (None, None, '.44', None)
0.5000 0.5 (None, None, '.5', None)
0000.5000 0.5 (None, None, '.5', None)
0.90 0.9 (None, None, '.9', None)
000.90 0.9 (None, None, '.9', None)
0.7 0.7 (None, None, '.7', None)
000.7 0.7 (None, None, '.7', None)
2.6 2.6 (None, None, None, '2.6')
00002.6 2.6 (None, None, None, '2.6')
00002.60000 2.6 (None, None, None, '2.6')
4.71 4.71 (None, None, None, '4.71')
0004.71 4.71 (None, None, None, '4.71')
0004.7100 4.71 (None, None, None, '4.71')
23.49 23.49 (None, None, None, '23.49')
00023.49 23.49 (None, None, None, '23.49')
00023.490000 23.49 (None, None, None, '23.49')
103.45 103.45 (None, None, None, '103.45')
0000103.45 103.45 (None, None, None, '103.45')
0000103.45000 103.45 (None, None, None, '103.45')
10003.45067 10003.45067 (None, None, None, '10003.45067')
000010003.45067 10003.45067 (None, None, None, '10003.45067')
000010003.4506700 10003.45067 (None, None, None, '10003.45067')
15000.0012 15000.0012 (None, None, None, '15000.0012')
000015000.0012 15000.0012 (None, None, None, '15000.0012')
000015000.0012000 15000.0012 (None, None, None, '15000.0012')
78000.89 78000.89 (None, None, None, '78000.89')
000078000.89 78000.89 (None, None, None, '78000.89')
000078000.89000 78000.89 (None, None, None, '78000.89')
.0457e10 0.0457e10 (None, None, '.0457', None)
.0457000e10 0.0457e10 (None, None, '.0457', None)
0.782e10 0.782e10 (None, None, '.782', None)
0000.782e10 0.782e10 (None, None, '.782', None)
0000.7820000e10 0.782e10 (None, None, '.782', None)
1.23E2 1.23E2 (None, None, None, '1.23')
0001.23E2 1.23E2 (None, None, None, '1.23')
0001.2300000E2 1.23E2 (None, None, None, '1.23')
1.46e10 1.46e10 (None, None, None, '1.46')
0001.46e10 1.46e10 (None, None, None, '1.46')
0001.4600000e10 1.46e10 (None, None, None, '1.46')
1.077e-456 1.077e-456 (None, None, None, '1.077')
0001.077e-456 1.077e-456 (None, None, None, '1.077')
0001.077000e-456 1.077e-456 (None, None, None, '1.077')
1.069e10 1.069e10 (None, None, None, '1.069')
0001.069e10 1.069e10 (None, None, None, '1.069')
0001.069000e10 1.069e10 (None, None, None, '1.069')
105040.03e10 105040.03e10 (None, None, None, '105040.03')
000105040.03e10 105040.03e10 (None, None, None, '105040.03')
105040.0300e10 105040.03e10 (None, None, None, '105040.03')
..18000 No match No groups
25..00 No match No groups
36...77 No match No groups
2..8 No match No groups
3.8..9 No match No groups
.12500. No match No groups
12.51.400 No match No groups