web-dev-qa-db-ja.com

Pythonの多重線形回帰

多重回帰を行うpythonライブラリが見つからないようです。私が見つけたものは、単純な回帰のみを行います。従属変数(y)をいくつかの独立変数(x1、x2、x3など)に対して回帰する必要があります。

たとえば、次のデータの場合:

print 'y        x1      x2       x3       x4      x5     x6       x7'
for t in texts:
    print "{:>7.1f}{:>10.2f}{:>9.2f}{:>9.2f}{:>10.2f}{:>7.2f}{:>7.2f}{:>9.2f}" /
   .format(t.y,t.x1,t.x2,t.x3,t.x4,t.x5,t.x6,t.x7)

(上記の出力:)

      y        x1       x2       x3        x4     x5     x6       x7
   -6.0     -4.95    -5.87    -0.76     14.73   4.02   0.20     0.45
   -5.0     -4.55    -4.52    -0.71     13.74   4.47   0.16     0.50
  -10.0    -10.96   -11.64    -0.98     15.49   4.18   0.19     0.53
   -5.0     -1.08    -3.36     0.75     24.72   4.96   0.16     0.60
   -8.0     -6.52    -7.45    -0.86     16.59   4.29   0.10     0.48
   -3.0     -0.81    -2.36    -0.50     22.44   4.81   0.15     0.53
   -6.0     -7.01    -7.33    -0.33     13.93   4.32   0.21     0.50
   -8.0     -4.46    -7.65    -0.94     11.40   4.43   0.16     0.49
   -8.0    -11.54   -10.03    -1.03     18.18   4.28   0.21     0.55

線形回帰式を取得するには、これらをPythonでどのように回帰しますか:

Y = a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + + a7x7 + c

109
Zach

sklearn.linear_model.LinearRegression はそれを行います:

from sklearn import linear_model
clf = linear_model.LinearRegression()
clf.fit([[getattr(t, 'x%d' % i) for i in range(1, 8)] for t in texts],
        [t.y for t in texts])

その後、clf.coef_に回帰係数が含まれます。

sklearn.linear_model には、回帰に関するさまざまな種類の正則化を行うための同様のインターフェースもあります。

91
Dougal

ここに、私が作成した小さな回避策があります。私はRでそれをチェックし、それは正しく動作します。

import numpy as np
import statsmodels.api as sm

y = [1,2,3,4,3,4,5,4,5,5,4,5,4,5,4,5,6,5,4,5,4,3,4]

x = [
     [4,2,3,4,5,4,5,6,7,4,8,9,8,8,6,6,5,5,5,5,5,5,5],
     [4,1,2,3,4,5,6,7,5,8,7,8,7,8,7,8,7,7,7,7,7,6,5],
     [4,1,2,5,6,7,8,9,7,8,7,8,7,7,7,7,7,7,6,6,4,4,4]
     ]

def reg_m(y, x):
    ones = np.ones(len(x[0]))
    X = sm.add_constant(np.column_stack((x[0], ones)))
    for ele in x[1:]:
        X = sm.add_constant(np.column_stack((ele, X)))
    results = sm.OLS(y, X).fit()
    return results

結果:

print reg_m(y, x).summary()

出力:

                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.535
Model:                            OLS   Adj. R-squared:                  0.461
Method:                 Least Squares   F-statistic:                     7.281
Date:                Tue, 19 Feb 2013   Prob (F-statistic):            0.00191
Time:                        21:51:28   Log-Likelihood:                -26.025
No. Observations:                  23   AIC:                             60.05
Df Residuals:                      19   BIC:                             64.59
Df Model:                           3                                         
==============================================================================
                 coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
x1             0.2424      0.139      1.739      0.098        -0.049     0.534
x2             0.2360      0.149      1.587      0.129        -0.075     0.547
x3            -0.0618      0.145     -0.427      0.674        -0.365     0.241
const          1.5704      0.633      2.481      0.023         0.245     2.895

==============================================================================
Omnibus:                        6.904   Durbin-Watson:                   1.905
Prob(Omnibus):                  0.032   Jarque-Bera (JB):                4.708
Skew:                          -0.849   Prob(JB):                       0.0950
Kurtosis:                       4.426   Cond. No.                         38.6

pandasは、この回答にあるようにOLSを実行する便利な方法を提供します。

Pandasデータフレームを使用してOLS回帰を実行

58
Akavall

明確にするために、与えた例はmultiple線形回帰であり、multivariate線形回帰参照ではありません。

単一のスカラー予測変数xと単一のスカラー応答変数yの非常に単純なケースは、単純線形回帰として知られています。複数および/またはベクトル値の予測変数(大文字のXで表される)への拡張は、多重線形回帰とも呼ばれ、多変数線形回帰とも呼ばれます。ほぼすべての実世界の回帰モデルには複数の予測変数が関係しており、線形回帰の基本的な説明は、多くの場合、多重回帰モデルに基づいて表現されます。ただし、これらの場合、応答変数yは依然としてスカラーであることに注意してください。多変量線形回帰という別の用語は、yがベクトルである場合、つまり一般的な線形回帰と同じ場合を指します。多変量線形回帰と多変数線形回帰の違いは、文献で多くの混乱と誤解を引き起こすため、強調する必要があります。

要するに:

  • multiple線形回帰:応答yはスカラーです。
  • multivariate線形回帰:応答yはベクトルです。

(別の ソース 。)

44

numpy.linalg.lstsq を使用できます。

import numpy as np
y = np.array([-6,-5,-10,-5,-8,-3,-6,-8,-8])
X = np.array([[-4.95,-4.55,-10.96,-1.08,-6.52,-0.81,-7.01,-4.46,-11.54],[-5.87,-4.52,-11.64,-3.36,-7.45,-2.36,-7.33,-7.65,-10.03],[-0.76,-0.71,-0.98,0.75,-0.86,-0.50,-0.33,-0.94,-1.03],[14.73,13.74,15.49,24.72,16.59,22.44,13.93,11.40,18.18],[4.02,4.47,4.18,4.96,4.29,4.81,4.32,4.43,4.28],[0.20,0.16,0.19,0.16,0.10,0.15,0.21,0.16,0.21],[0.45,0.50,0.53,0.60,0.48,0.53,0.50,0.49,0.55]])
X = X.T # transpose so input vectors are along the rows
X = np.c_[X, np.ones(X.shape[0])] # add bias term
beta_hat = np.linalg.lstsq(X,y)[0]
print beta_hat

結果:

[ -0.49104607   0.83271938   0.0860167    0.1326091    6.85681762  22.98163883 -41.08437805 -19.08085066]

推定出力は次で確認できます:

print np.dot(X,beta_hat)

結果:

[ -5.97751163,  -5.06465759, -10.16873217,  -4.96959788,  -7.96356915,  -3.06176313,  -6.01818435,  -7.90878145,  -7.86720264]
26
Imran

scipy.optimize.curve_fitを使用します。そして、線形フィットだけではありません。

from scipy.optimize import curve_fit
import scipy

def fn(x, a, b, c):
    return a + b*x[0] + c*x[1]

# y(x0,x1) data:
#    x0=0 1 2
# ___________
# x1=0 |0 1 2
# x1=1 |1 2 3
# x1=2 |2 3 4

x = scipy.array([[0,1,2,0,1,2,0,1,2,],[0,0,0,1,1,1,2,2,2]])
y = scipy.array([0,1,2,1,2,3,2,3,4])
popt, pcov = curve_fit(fn, x, y)
print popt
11
Volodimir Kopey

データをpandasデータフレーム(df)に変換したら、

import statsmodels.formula.api as smf
lm = smf.ols(formula='y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7', data=df).fit()
print(lm.params)

インターセプト用語はデフォルトで含まれています。

他の例については、 このノートブック を参照してください。

これが、この作業を完了する最も簡単な方法だと思います。

from random import random
from pandas import DataFrame
from statsmodels.api import OLS
lr = lambda : [random() for i in range(100)]
x = DataFrame({'x1': lr(), 'x2':lr(), 'x3':lr()})
x['b'] = 1
y = x.x1 + x.x2 * 2 + x.x3 * 3 + 4

print x.head()

         x1        x2        x3  b
0  0.433681  0.946723  0.103422  1
1  0.400423  0.527179  0.131674  1
2  0.992441  0.900678  0.360140  1
3  0.413757  0.099319  0.825181  1
4  0.796491  0.862593  0.193554  1

print y.head()

0    6.637392
1    5.849802
2    7.874218
3    7.087938
4    7.102337
dtype: float64

model = OLS(y, x)
result = model.fit()
print result.summary()

                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       1.000
Model:                            OLS   Adj. R-squared:                  1.000
Method:                 Least Squares   F-statistic:                 5.859e+30
Date:                Wed, 09 Dec 2015   Prob (F-statistic):               0.00
Time:                        15:17:32   Log-Likelihood:                 3224.9
No. Observations:                 100   AIC:                            -6442.
Df Residuals:                      96   BIC:                            -6431.
Df Model:                           3                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
x1             1.0000   8.98e-16   1.11e+15      0.000         1.000     1.000
x2             2.0000   8.28e-16   2.41e+15      0.000         2.000     2.000
x3             3.0000   8.34e-16    3.6e+15      0.000         3.000     3.000
b              4.0000   8.51e-16    4.7e+15      0.000         4.000     4.000
==============================================================================
Omnibus:                        7.675   Durbin-Watson:                   1.614
Prob(Omnibus):                  0.022   Jarque-Bera (JB):                3.118
Skew:                           0.045   Prob(JB):                        0.210
Kurtosis:                       2.140   Cond. No.                         6.89
==============================================================================
4
xmduhan

上記のように、sklearnライブラリーを使用して、複数の線形回帰を処理できます。 Python 3.6のAnacondaインストールを使用しています。

次のようにモデルを作成します。

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X, y)

# display coefficients
print(regressor.coef_)
4
Eric C. Bohn

numpy.linalg.lstsq を使用できます

3
Moukden

以下の関数を使用して、DataFrameを渡すことができます。

def linear(x, y=None, show=True):
    """
    @param x: pd.DataFrame
    @param y: pd.DataFrame or pd.Series or None
              if None, then use last column of x as y
    @param show: if show regression summary
    """
    import statsmodels.api as sm

    xy = sm.add_constant(x if y is None else pd.concat([x, y], axis=1))
    res = sm.OLS(xy.ix[:, -1], xy.ix[:, :-1], missing='drop').fit()

    if show: print res.summary()
    return res
1
Alpha

代替の基本的な方法を次に示します。

from patsy import dmatrices
import statsmodels.api as sm

y,x = dmatrices("y_data ~ x_1 + x_2 ", data = my_data)
### y_data is the name of the dependent variable in your data ### 
model_fit = sm.OLS(y,x)
results = model_fit.fit()
print(results.summary())

sm.OLSの代わりに、sm.Logitまたはsm.Probitなども使用できます。

0
newbiee