web-dev-qa-db-ja.com

Pythonを使用したスプライン補間

スプライン補間を実行するために次のコードを書きました。

import numpy as np
import scipy as sp

x1 = [1., 0.88,  0.67,  0.50,  0.35,  0.27, 0.18,  0.11,  0.08,  0.04,  0.04,  0.02]
y1 = [0., 13.99, 27.99, 41.98, 55.98, 69.97, 83.97, 97.97, 111.96, 125.96, 139.95, 153.95]

x = np.array(x1)
y = np.array(y1)

new_length = 25
new_x = np.linspace(x.min(), x.max(), new_length)
new_y = sp.interpolate.interp1d(x, y, kind='cubic')(new_x)

しかし私は得ています:

ValueError: A value in x_new is below the interpolation range.

interpolate.py

任意の助けいただければ幸いです。

12
Hellfish

scipy.interpolate.interp1dのscipyドキュメント から:

scipy.interpolate.interp1d(x、y、kind = 'linear'、axis = -1、copy = True、bounds_error = True、fill_value = np.nan)

x:array_like。単調に増加する実数値の1次元配列。

...

問題は、x値が 単調増加 ではないことです。実際、それらは単調に減少しています。これが機能するかどうか、それでもあなたが探している計算かどうかを教えてください:

import numpy as np
import scipy as sp
from scipy.interpolate import interp1d

x1 = sorted([1., 0.88, 0.67, 0.50, 0.35, 0.27, 0.18, 0.11, 0.08, 0.04, 0.04, 0.02])
y1 = [0., 13.99, 27.99, 41.98, 55.98, 69.97, 83.97, 97.97, 111.96, 125.96, 139.95, 153.95]

new_length = 25
new_x = np.linspace(x.min(), x.max(), new_length)
new_y = sp.interpolate.interp1d(x, y, kind='cubic')(new_x)
13
ciferkey

これは次の方法で取得できます。

import numpy as np
import scipy as sp
from scipy.interpolate import interp1d

x1 = [1., 0.88,  0.67,  0.50,  0.35,  0.27, 0.18,  0.11,  0.08,  0.04,  0.04,  0.02]
y1 = [0., 13.99, 27.99, 41.98, 55.98, 69.97, 83.97, 97.97, 111.96, 125.96, 139.95, 153.95]

# Combine lists into list of tuples
points = Zip(x1, y1)

# Sort list of tuples by x-value
points = sorted(points, key=lambda point: point[0])

# Split list of tuples into two list of x values any y values
x1, y1 = Zip(*points)

new_length = 25
new_x = np.linspace(min(x1), max(x1), new_length)
new_y = sp.interpolate.interp1d(x1, y1, kind='cubic')(new_x)
11
Martin Thoma