複雑なテキストファイルを解析してpandas DataFrame。
もっと簡潔/高速/ Pythony /読みやすくする方法はありますか?
また、この質問を Code Review に付けました。
最終的に 初心者にこれを説明するブログ記事 を書きました。
サンプルファイルを次に示します。
Sample text
A selection of students from Riverdale High and Hogwarts took part in a quiz. This is a record of their scores.
School = Riverdale High
Grade = 1
Student number, Name
0, Phoebe
1, Rachel
Student number, Score
0, 3
1, 7
Grade = 2
Student number, Name
0, Angela
1, Tristan
2, Aurora
Student number, Score
0, 6
1, 3
2, 9
School = Hogwarts
Grade = 1
Student number, Name
0, Ginny
1, Luna
Student number, Score
0, 8
1, 7
Grade = 2
Student number, Name
0, Harry
1, Hermione
Student number, Score
0, 5
1, 10
Grade = 3
Student number, Name
0, Fred
1, George
Student number, Score
0, 0
1, 0
解析後に結果をどのように表示するかを以下に示します。
Name Score
School Grade Student number
Hogwarts 1 0 Ginny 8
1 Luna 7
2 0 Harry 5
1 Hermione 10
3 0 Fred 0
1 George 0
Riverdale High 1 0 Phoebe 3
1 Rachel 7
2 0 Angela 6
1 Tristan 3
2 Aurora 9
現在、私はそれをどのように解析していますか:
import re
import pandas as pd
def parse(filepath):
"""
Parse text at given filepath
Parameters
----------
filepath : str
Filepath for file to be parsed
Returns
-------
data : pd.DataFrame
Parsed data
"""
data = []
with open(filepath, 'r') as file:
line = file.readline()
while line:
reg_match = _RegExLib(line)
if reg_match.school:
school = reg_match.school.group(1)
if reg_match.grade:
grade = reg_match.grade.group(1)
grade = int(grade)
if reg_match.name_score:
value_type = reg_match.name_score.group(1)
line = file.readline()
while line.strip():
number, value = line.strip().split(',')
value = value.strip()
dict_of_data = {
'School': school,
'Grade': grade,
'Student number': number,
value_type: value
}
data.append(dict_of_data)
line = file.readline()
line = file.readline()
data = pd.DataFrame(data)
data.set_index(['School', 'Grade', 'Student number'], inplace=True)
# consolidate df to remove nans
data = data.groupby(level=data.index.names).first()
# upgrade Score from float to integer
data = data.apply(pd.to_numeric, errors='ignore')
return data
class _RegExLib:
"""Set up regular expressions"""
# use https://regexper.com to visualise these if required
_reg_school = re.compile('School = (.*)\n')
_reg_grade = re.compile('Grade = (.*)\n')
_reg_name_score = re.compile('(Name|Score)')
def __init__(self, line):
# check whether line has a positive match with all of the regular expressions
self.school = self._reg_school.match(line)
self.grade = self._reg_grade.match(line)
self.name_score = self._reg_name_score.search(line)
if __name__ == '__main__':
filepath = 'sample.txt'
data = parse(filepath)
print(data)
ここでは、splitとpd.concat(「txt」は質問の元のテキストのコピーを意味します)を使用した私の提案です。名前とグレードがcsvのような形式であるという事実の。ここに行きます:
import pandas as pd
from io import StringIO
schools = txt.lower().split('school = ')
schools_dfs = []
for school in schools[1:]:
grades = school.split('grade = ')
grades_dfs = []
for grade in grades[1:]:
features = grade.split('student number,')
feature_dfs = []
for feature in features[1:]:
feature_dfs.append(pd.read_csv(StringIO(feature)))
feature_df = pd.concat(feature_dfs, axis=1)
feature_df['grade'] = features[0].replace('\n','')
grades_dfs.append(feature_df)
grades_df = pd.concat(grades_dfs)
grades_df['school'] = grades[0].replace('\n','')
schools_dfs.append(grades_df)
schools_df = pd.concat(schools_dfs)
schools_df.set_index(['school', 'grade'])
元のコードと同様の方法で、解析正規表現を定義します
import re
import pandas as pd
parse_re = {
'school': re.compile(r'School = (?P<school>.*)$'),
'grade': re.compile(r'Grade = (?P<grade>\d+)'),
'student': re.compile(r'Student number, (?P<info>\w+)'),
'data': re.compile(r'(?P<number>\d+), (?P<value>.*)$'),
}
def parse(line):
'''parse the line by regex search against possible line formats
returning the id and match result of first matching regex,
or None if no match is found'''
return reduce(lambda (i,m),(id,rx): (i,m) if m else (id, rx.search(line)),
parse_re.items(), (None,None))
その後、各生徒に関する情報を収集する行をループします。レコードが完成したら(Score
があればレコードは完成します)、レコードをリストに追加します。
行ごとの正規表現一致によって駆動される小さな状態マシンは、各レコードを照合します。特に、スコアと名前は入力ファイルで別々に提供されるため、生徒を番号で成績で保存する必要があります。
results = []
with open('sample.txt') as f:
record = {}
for line in f:
id, match = parse(line)
if match is None:
continue
if id == 'school':
record['School'] = match.group('school')
Elif id == 'grade':
record['Grade'] = int(match.group('grade'))
names = {} # names is a number indexed dictionary of student names
Elif id == 'student':
info = match.group('info')
Elif id == 'data':
number = int(match.group('number'))
value = match.group('value')
if info == 'Name':
names[number] = value
Elif info == 'Score':
record['Student number'] = number
record['Name'] = names[number]
record['Score'] = int(value)
results.append(record.copy())
最後に、レコードのリストがDataFrame
に変換されます。
df = pd.DataFrame(results, columns=['School', 'Grade', 'Student number', 'Name', 'Score'])
print df
出力:
School Grade Student number Name Score
0 Riverdale High 1 0 Phoebe 3
1 Riverdale High 1 1 Rachel 7
2 Riverdale High 2 0 Angela 6
3 Riverdale High 2 1 Tristan 3
4 Riverdale High 2 2 Aurora 9
5 Hogwarts 1 0 Ginny 8
6 Hogwarts 1 1 Luna 7
7 Hogwarts 2 0 Harry 5
8 Hogwarts 2 1 Hermione 10
9 Hogwarts 3 0 Fred 0
10 Hogwarts 3 1 George 0
いくつかの最適化は、最も一般的な正規表現を最初に比較し、空白行を明示的にスキップすることです。データフレームを作成することで、データの余分なコピーを避けることができますが、データフレームへの追加はコストのかかる操作であると思います。