次のようなコードを作成できるように、私の検索で発見できなかったモジュールはありますか?このようなコードを書きたい理由は重要ではありません。私が求めているのは、公開および秘密のバイトキーを生成し、それらのキーを使用してデータを簡単にエンコードおよびデコードするシンプルなAPIを備えたコードです。
import module, os
method, bits, data = 'RSA', 1024, os.urandom(1024)
public, private = module.generate_keys(method, bits)
assert isinstance(public, bytes) and isinstance(private, bytes)
assert module.decode(module.encode(data, private), public) == data
assert module.decode(module.encode(data, public), private) == data
利用できるように見えるもののほとんどは、パッケージをダウンロードする必要があり、Python 2.xでのみ実行されます。PEMファイルまたは他のタイプの証明書で動作するライブラリを見つけることも非常に一般的です。そのようなファイルを処理する必要をなくし、その場で公開鍵と秘密鍵を生成し、メモリ内のデータをすばやく処理するのが好きです。
公開鍵暗号化は標準ライブラリにはありません。 PyPi にはサードパーティのライブラリがいくつかありますが:
その背後にある数学に興味がある場合は、Pythonを使用すると簡単に実験できます。
code = pow(msg, 65537, 5551201688147) # encode using a public key
plaintext = pow(code, 109182490673, 5551201688147) # decode using a private key
鍵の生成はもう少し複雑です。これは、エントロピーのソースとしてurandomを使用してメモリ内でキーを生成する方法の簡単な例です。コードはPy2.6とPy3.xの両方で実行されます。
import random
def gen_prime(N=10**8, bases=range(2,20000)):
# XXX replace with a more sophisticated algorithm
p = 1
while any(pow(base, p-1, p) != 1 for base in bases):
p = random.SystemRandom().randrange(N)
return p
def multinv(modulus, value):
'''Multiplicative inverse in a given modulus
>>> multinv(191, 138)
18
>>> 18 * 138 % 191
1
'''
# http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
x, lastx = 0, 1
a, b = modulus, value
while b:
a, q, b = b, a // b, a % b
x, lastx = lastx - q * x, x
result = (1 - lastx * modulus) // value
return result + modulus if result < 0 else result
def keygen(N):
'''Generate public and private keys from primes up to N.
>>> pubkey, privkey = keygen(2**64)
>>> msg = 123456789012345
>>> coded = pow(msg, 65537, pubkey)
>>> plain = pow(coded, privkey, pubkey)
>>> assert msg == plain
'''
# http://en.wikipedia.org/wiki/RSA
prime1 = gen_prime(N)
prime2 = gen_prime(N)
totient = (prime1 - 1) * (prime2 - 1)
return prime1 * prime2, multinv(totient, 65537)
これが別の例です
import random
# RSA Algorithm
ops = raw_input('Would you like a list of prime numbers to choose from (y/n)? ')
op = ops.upper()
if op == 'Y':
print """\n 2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 \n"""
rsa()
else:
print "\n"
rsa()
def rsa():
# Choose two prime numbers p and q
p = raw_input('Choose a p: ')
p = int(p)
while isPrime(p) == False:
print "Please ensure p is prime"
p = raw_input('Choose a p: ')
p = int(p)
q = raw_input('Choose a q: ')
q = int(q)
while isPrime(q) == False or p==q:
print "Please ensure q is prime and NOT the same value as p"
q = raw_input('Choose a q: ')
q = int(q)
# Compute n = pq
n = p * q
# Compute the phi of n
phi = (p-1) * (q-1)
# Choose an integer e such that e and phi(n) are coprime
e = random.randrange(1,phi)
# Use Euclid's Algorithm to verify that e and phi(n) are comprime
g = euclid(e,phi)
while(g!=1):
e = random.randrange(1,phi)
g = euclid(e,phi)
# Use Extended Euclid's Algorithm
d = extended_euclid(e,phi)
# Public and Private Key have been generated
public_key=(e,n)
private_key=(d,n)
print "Public Key [E,N]: ", public_key
print "Private Key [D,N]: ", private_key
# Enter plain text to be encrypted using the Public Key
sentence = raw_input('Enter plain text: ')
letters = list(sentence)
cipher = []
num = ""
# Encrypt the plain text
for i in range(0,len(letters)):
print "Value of ", letters[i], " is ", character[letters[i]]
c = (character[letters[i]]**e)%n
cipher += [c]
num += str(c)
print "Cipher Text is: ", num
plain = []
sentence = ""
# Decrypt the cipher text
for j in range(0,len(cipher)):
p = (cipher[j]**d)%n
for key in character.keys():
if character[key]==p:
plain += [key]
sentence += key
break
print "Plain Text is: ", sentence
# Euclid's Algorithm
def euclid(a, b):
if b==0:
return a
else:
return euclid(b, a % b)
# Euclid's Extended Algorithm
def extended_euclid(e,phi):
d=0
x1=0
x2=1
y1=1
orig_phi = phi
tempPhi = phi
while (e>0):
temp1 = int(tempPhi/e)
temp2 = tempPhi - temp1 * e
tempPhi = e
e = temp2
x = x2- temp1* x1
y = d - temp1 * y1
x2 = x1
x1 = x
d = y1
y1 = y
if tempPhi == 1:
d += phi
break
return d
# Checks if n is a prime number
def isPrime(n):
for i in range(2,n):
if n%i == 0:
return False
return True
character = {"A":1,"B":2,"C":3,"D":4,"E":5,"F":6,"G":7,"H":8,"I":9,"J":10,
"K":11,"L":12,"M":13,"N":14,"O":15,"P":16,"Q":17,"R":18,"S":19,
"T":20,"U":21,"V":22,"W":23,"X":24,"Y":25,"Z":26,"a":27,"b":28,
"c":29,"d":30,"e":31,"f":32,"g":33,"h":34,"i":35,"j":36,"k":37,
"l":38,"m":39,"n":40,"o":41,"p":42,"q":43,"r":44,"s":45,"t":46,
"u":47,"v":48,"w":49,"x":50,"y":51,"z":52, " ":53, ".":54, ",":55,
"?":56,"/":57,"!":58,"(":59,")":60,"$":61,":":62,";":63,"'":64,"@":65,
"#":66,"%":67,"^":68,"&":69,"*":70,"+":71,"-":72,"_":73,"=":74}
PyCrypto 2.4.1の時点でPython 3で動作します。