私は、ユーザー選択可能なスムージング係数を使用して自然なスムージングスプラインに適合するオプションを提供するpythonパッケージを見つけようとしています。そうでない場合、自分で実装するために利用可能なものをどのように使用しますか?
自然なスプラインとは、端点での近似関数の2次導関数がゼロ(線形)であるという条件があることを意味します。
スプラインを平滑化するということは、スプラインが「すべてのデータポイントを通過する」「補間」であってはならないことを意味します。正しい平滑化係数lambda(スプラインの平滑化については Wikipediaページ を参照)を自分で決定したいと思います。
数時間の調査の後、ユーザーが制御可能な滑らかさで自然な3次スプラインに適合するピップインストール可能なパッケージは見つかりませんでした。しかし、自分自身で書くことを決めた後、トピックについて読んでいると、私はgithubユーザー madrury による ブログ投稿 を見つけました。彼はpython自然な3次スプラインモデルを生成できるコードを書いた。
モデルコードは、 here (NaturalCubicSpline)と BSDライセンス で入手できます。彼は IPythonノートブック でいくつかの例を書いています。
しかし、これはインターネットであり、リンクは消滅する傾向があるため、ここでソースコードの関連部分と私が作成したヘルパー関数(get_natural_cubic_spline_model
)をコピーし、その使用方法の例を示します。フィットの滑らかさは、異なる数のノットを使用して制御できます。ノットの位置もユーザーが指定できます。
from matplotlib import pyplot as plt
import numpy as np
def func(x):
return 1/(1+25*x**2)
# make example data
x = np.linspace(-1,1,300)
y = func(x) + np.random.normal(0, 0.2, len(x))
# The number of knots can be used to control the amount of smoothness
model_6 = get_natural_cubic_spline_model(x, y, minval=min(x), maxval=max(x), n_knots=6)
model_15 = get_natural_cubic_spline_model(x, y, minval=min(x), maxval=max(x), n_knots=15)
y_est_6 = model_6.predict(x)
y_est_15 = model_15.predict(x)
plt.plot(x, y, ls='', marker='.', label='originals')
plt.plot(x, y_est_6, marker='.', label='n_knots = 6')
plt.plot(x, y_est_15, marker='.', label='n_knots = 15')
plt.legend(); plt.show()
get_natural_cubic_spline_model
のソースコードimport numpy as np
import pandas as pd
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
def get_natural_cubic_spline_model(x, y, minval=None, maxval=None, n_knots=None, knots=None):
"""
Get a natural cubic spline model for the data.
For the knots, give (a) `knots` (as an array) or (b) minval, maxval and n_knots.
If the knots are not directly specified, the resulting knots are equally
space within the *interior* of (max, min). That is, the endpoints are
*not* included as knots.
Parameters
----------
x: np.array of float
The input data
y: np.array of float
The outpur data
minval: float
Minimum of interval containing the knots.
maxval: float
Maximum of the interval containing the knots.
n_knots: positive integer
The number of knots to create.
knots: array or list of floats
The knots.
Returns
--------
model: a model object
The returned model will have following method:
- predict(x):
x is a numpy array. This will return the predicted y-values.
"""
if knots:
spline = NaturalCubicSpline(knots=knots)
else:
spline = NaturalCubicSpline(max=maxval, min=minval, n_knots=n_knots)
p = Pipeline([
('nat_cubic', spline),
('regression', LinearRegression(fit_intercept=True))
])
p.fit(x, y)
return p
class AbstractSpline(BaseEstimator, TransformerMixin):
"""Base class for all spline basis expansions."""
def __init__(self, max=None, min=None, n_knots=None, n_params=None, knots=None):
if knots is None:
if not n_knots:
n_knots = self._compute_n_knots(n_params)
knots = np.linspace(min, max, num=(n_knots + 2))[1:-1]
max, min = np.max(knots), np.min(knots)
self.knots = np.asarray(knots)
@property
def n_knots(self):
return len(self.knots)
def fit(self, *args, **kwargs):
return self
class NaturalCubicSpline(AbstractSpline):
"""Apply a natural cubic basis expansion to an array.
The features created with this basis expansion can be used to fit a
piecewise cubic function under the constraint that the fitted curve is
linear *outside* the range of the knots.. The fitted curve is continuously
differentiable to the second order at all of the knots.
This transformer can be created in two ways:
- By specifying the maximum, minimum, and number of knots.
- By specifying the cutpoints directly.
If the knots are not directly specified, the resulting knots are equally
space within the *interior* of (max, min). That is, the endpoints are
*not* included as knots.
Parameters
----------
min: float
Minimum of interval containing the knots.
max: float
Maximum of the interval containing the knots.
n_knots: positive integer
The number of knots to create.
knots: array or list of floats
The knots.
"""
def _compute_n_knots(self, n_params):
return n_params
@property
def n_params(self):
return self.n_knots - 1
def transform(self, X, **transform_params):
X_spl = self._transform_array(X)
if isinstance(X, pd.Series):
col_names = self._make_names(X)
X_spl = pd.DataFrame(X_spl, columns=col_names, index=X.index)
return X_spl
def _make_names(self, X):
first_name = "{}_spline_linear".format(X.name)
rest_names = ["{}_spline_{}".format(X.name, idx)
for idx in range(self.n_knots - 2)]
return [first_name] + rest_names
def _transform_array(self, X, **transform_params):
X = X.squeeze()
try:
X_spl = np.zeros((X.shape[0], self.n_knots - 1))
except IndexError: # For arrays with only one element
X_spl = np.zeros((1, self.n_knots - 1))
X_spl[:, 0] = X.squeeze()
def d(knot_idx, x):
def ppart(t): return np.maximum(0, t)
def cube(t): return t*t*t
numerator = (cube(ppart(x - self.knots[knot_idx]))
- cube(ppart(x - self.knots[self.n_knots - 1])))
denominator = self.knots[self.n_knots - 1] - self.knots[knot_idx]
return numerator / denominator
for i in range(0, self.n_knots - 2):
X_spl[:, i+1] = (d(i, X) - d(self.n_knots - 2, X)).squeeze()
return X_spl
このnumpy/scipy実装 を使用して、単変量/多変量データの平滑化に自然な3次平滑化スプラインを使用できます。平滑化パラメーターの範囲は[0.0、1.0]でなければなりません。 1.0に等しい平滑化パラメーターを使用すると、データの平滑化なしで自然な3次スプライン補間が得られます。また、実装は単変量データのベクトル化をサポートします。
一変量の例:
import numpy as np
import matplotlib.pyplot as plt
import csaps
np.random.seed(1234)
x = np.linspace(-5., 5., 25)
y = np.exp(-(x/2.5)**2) + (np.random.Rand(25) - 0.2) * 0.3
sp = csaps.UnivariateCubicSmoothingSpline(x, y, smooth=0.85)
xs = np.linspace(x[0], x[-1], 150)
ys = sp(xs)
plt.plot(x, y, 'o', xs, ys, '-')
plt.show()
二変量の例:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import csaps
xdata = [np.linspace(-3, 3, 61), np.linspace(-3.5, 3.5, 51)]
i, j = np.meshgrid(*xdata, indexing='ij')
ydata = (3 * (1 - j)**2. * np.exp(-(j**2) - (i + 1)**2)
- 10 * (j / 5 - j**3 - i**5) * np.exp(-j**2 - i**2)
- 1 / 3 * np.exp(-(j + 1)**2 - i**2))
np.random.seed(12345)
noisy = ydata + (np.random.randn(*ydata.shape) * 0.75)
sp = csaps.MultivariateCubicSmoothingSpline(xdata, noisy, smooth=0.988)
ysmth = sp(xdata)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_wireframe(j, i, noisy, linewidths=0.5, color='r')
ax.scatter(j, i, noisy, s=5, c='r')
ax.plot_surface(j, i, ysmth, linewidth=0, alpha=1.0)
plt.show()
プログラミング言語Rは、自然な3次平滑化スプラインの非常に優れた実装を提供します。 PythonでR関数をrpy2
とともに使用できます。
import rpy2.robjects as robjects
r_y = robjects.FloatVector(y_train)
r_x = robjects.FloatVector(x_train)
r_smooth_spline = robjects.r['smooth.spline'] #extract R function# run smoothing function
spline1 = r_smooth_spline(x=r_x, y=r_y, spar=0.7)
ySpline=np.array(robjects.r['predict'](spline1,robjects.FloatVector(x_smooth)).rx2('y'))
plt.plot(x_smooth,ySpline)
lambda
を直接設定する場合:spline1 = r_smooth_spline(x=r_x, y=r_y, lambda=42)
は機能しません。Pythonでlambda
はすでに別の意味を持っていますが、解決策があります: RPMでsmooth.splineのlambda引数を使用する方法Pythonをlambda として解釈する方法。
コードを実行するには、最初にデータx_train
およびy_train
を定義する必要があり、フルHD解像度で-3から5の間でプロットする場合はx_smooth=np.array(np.linspace(-3,5,1920)).
を定義できます。