web-dev-qa-db-ja.com

Python:リスト値を使用して辞書を反復処理する

次のようなリストの辞書が与えられた場合

d = {'1':[11,12], '2':[21,21]}

どちらがよりPython的であるか、そうでなければ望ましいか:

for k in d:
    for x in d[k]:
        # whatever with k, x

または

for k, dk in d.iteritems():
    for x in dk:
        # whatever with k, x

または考慮すべき他の何かがありますか?

編集、リストが有用な場合(たとえば、標準の辞書では順序が保持されない)、これは適切ですが、はるかに遅いです。

d2 = d.items()
for k in d2:
        for x in d2[1]:
            # whatever with k, x
27
foosion

これが速度テストです。

import random
numEntries = 1000000
d = dict(Zip(range(numEntries), [random.sample(range(0, 100), 2) for x in range(numEntries)]))

def m1(d):
    for k in d:
        for x in d[k]:
            pass

def m2(d):
    for k, dk in d.iteritems():
        for x in dk:
            pass

import cProfile

cProfile.run('m1(d)')

print

cProfile.run('m2(d)')

# Ran 3 trials:
# m1: 0.205, 0.194, 0.193: average 0.197 s
# m2: 0.176, 0.166, 0.173: average 0.172 s

# Method 1 takes 15% more time than method 2

cProfileの出力例:

         3 function calls in 0.194 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.194    0.194 <string>:1(<module>)
        1    0.194    0.194    0.194    0.194 stackoverflow.py:7(m1)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



         4 function calls in 0.179 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.179    0.179 <string>:1(<module>)
        1    0.179    0.179    0.179    0.179 stackoverflow.py:12(m2)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}
        1    0.000    0.000    0.000    0.000 {method 'iteritems' of 'dict' objects}
16
Brionius

私はいくつかの方法を検討しました:

import itertools

COLORED_THINGS = {'blue': ['sky', 'jeans', 'powerline insert mode'],
                  'yellow': ['Sun', 'banana', 'phone book/monitor stand'],
                  'red': ['blood', 'tomato', 'test failure']}

def forloops():
    """ Nested for loops. """
    for color, things in COLORED_THINGS.items():
        for thing in things:
            pass

def iterator():
    """ Use itertools and list comprehension to construct iterator. """
    for color, thing in (
        itertools.chain.from_iterable(
            [itertools.product((k,), v) for k, v in COLORED_THINGS.items()])):
        pass

def iterator_gen():
    """ Use itertools and generator to construct iterator. """
    for color, thing in (
        itertools.chain.from_iterable(
            (itertools.product((k,), v) for k, v in COLORED_THINGS.items()))):
        pass

Ipythonと memory_profiler を使用してパフォーマンスをテストしました。

>>> %timeit forloops()
1000000 loops, best of 3: 1.31 µs per loop

>>> %timeit iterator()
100000 loops, best of 3: 3.58 µs per loop

>>> %timeit iterator_gen()
100000 loops, best of 3: 3.91 µs per loop

>>> %memit -r 1000 forloops()
peak memory: 35.79 MiB, increment: 0.02 MiB

>>> %memit -r 1000 iterator()
peak memory: 35.79 MiB, increment: 0.00 MiB

>>> %memit -r 1000 iterator_gen()
peak memory: 35.79 MiB, increment: 0.00 MiB

ご覧のように、この方法はピーク時のメモリ使用量に目に見えるほどの影響はありませんでしたが、ネストされたforループは速度が優れています(読みやすさは言うまでもありません)。

6
Ryne Everett

リスト内包アプローチです。ネスト...

r = [[i for i in d[x]] for x in d.keys()]
print r

[[11, 12], [21, 21]]
2
kelorek

Brioniusコードからの私の結果:

         3 function calls in 0.173 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.173    0.173 <string>:1(<module>)
        1    0.173    0.173    0.173    0.173 speed.py:5(m1)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Prof
iler' objects}


         4 function calls in 0.185 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.185    0.185 <string>:1(<module>)
        1    0.185    0.185    0.185    0.185 speed.py:10(m2)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Prof
iler' objects}
        1    0.000    0.000    0.000    0.000 {method 'iteritems' of 'dict' obje
cts}
2
foosion