Pythonで OpenCV を使用して、Webカメラからフレームを取得できます。カムシフトの例は私が望むものに近いですが、人間の介入でオブジェクトを定義することは望んでいません。数フレームの間に変化した全ピクセルの中心点、つまり移動するオブジェクトの中心を取得したいと思います。
[〜#〜] c [〜#〜] ブログ投稿にあるバージョンのコードモーション)から翻訳された実用的なコードがありますOpenCVを使用した検出:
#!/usr/bin/env python
import cv
class Target:
def __init__(self):
self.capture = cv.CaptureFromCAM(0)
cv.NamedWindow("Target", 1)
def run(self):
# Capture first frame to get size
frame = cv.QueryFrame(self.capture)
frame_size = cv.GetSize(frame)
color_image = cv.CreateImage(cv.GetSize(frame), 8, 3)
grey_image = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_8U, 1)
moving_average = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_32F, 3)
first = True
while True:
closest_to_left = cv.GetSize(frame)[0]
closest_to_right = cv.GetSize(frame)[1]
color_image = cv.QueryFrame(self.capture)
# Smooth to get rid of false positives
cv.Smooth(color_image, color_image, cv.CV_GAUSSIAN, 3, 0)
if first:
difference = cv.CloneImage(color_image)
temp = cv.CloneImage(color_image)
cv.ConvertScale(color_image, moving_average, 1.0, 0.0)
first = False
else:
cv.RunningAvg(color_image, moving_average, 0.020, None)
# Convert the scale of the moving average.
cv.ConvertScale(moving_average, temp, 1.0, 0.0)
# Minus the current frame from the moving average.
cv.AbsDiff(color_image, temp, difference)
# Convert the image to grayscale.
cv.CvtColor(difference, grey_image, cv.CV_RGB2GRAY)
# Convert the image to black and white.
cv.Threshold(grey_image, grey_image, 70, 255, cv.CV_THRESH_BINARY)
# Dilate and erode to get people blobs
cv.Dilate(grey_image, grey_image, None, 18)
cv.Erode(grey_image, grey_image, None, 10)
storage = cv.CreateMemStorage(0)
contour = cv.FindContours(grey_image, storage, cv.CV_RETR_CCOMP, cv.CV_CHAIN_APPROX_SIMPLE)
points = []
while contour:
bound_rect = cv.BoundingRect(list(contour))
contour = contour.h_next()
pt1 = (bound_rect[0], bound_rect[1])
pt2 = (bound_rect[0] + bound_rect[2], bound_rect[1] + bound_rect[3])
points.append(pt1)
points.append(pt2)
cv.Rectangle(color_image, pt1, pt2, cv.CV_RGB(255,0,0), 1)
if len(points):
center_point = reduce(lambda a, b: ((a[0] + b[0]) / 2, (a[1] + b[1]) / 2), points)
cv.Circle(color_image, center_point, 40, cv.CV_RGB(255, 255, 255), 1)
cv.Circle(color_image, center_point, 30, cv.CV_RGB(255, 100, 0), 1)
cv.Circle(color_image, center_point, 20, cv.CV_RGB(255, 255, 255), 1)
cv.Circle(color_image, center_point, 10, cv.CV_RGB(255, 100, 0), 1)
cv.ShowImage("Target", color_image)
# Listen for ESC key
c = cv.WaitKey(7) % 0x100
if c == 27:
break
if __name__=="__main__":
t = Target()
t.run()
フォーラムの投稿OpenCVを使用したモーショントラッキングを参照してください。
ソースコードを読んで Python に翻訳できると思いますよね?
if faces:
for ((x, y, w, h), n) in faces:
pt1 = (int(x * image_scale), int(y * image_scale))
pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
ptcx=((pt1[0]+pt2[0])/2)/128
ptcy=((pt1[1]+pt2[1])/2)/96
cv.Rectangle(gray, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
print ptcx;
print ptcy;
b=('S'+str(ptcx)+str(ptcy));
これは、長方形の境界を使用して追跡したときに、移動するオブジェクトの中心を取得しようとしたコードの一部です。
この次のリンクは、移動中の車両を追跡し、それらをカウントします。これはOpenCVに基づいており、Python 2.7で記述されています。
OpenCVおよびPython