私は現在、彗星の画像を含む天文データを扱っています。撮影時間(黄昏)のため、これらの画像の背景の空のグラデーションを削除したいと思います。そのために開発した最初のプログラムは、Matplotlibの「ginput」(x、y)からユーザーが選択したポイントを取得し、各座標(z)のデータを取得してから、SciPyの「griddata」を使用してデータを新しい配列にグリッド化しました。
背景はわずかにしか変化しないと想定されているので、この(x、y、z)点のセットに3D低次多項式を当てはめたいと思います。ただし、「griddata」では入力順序は許可されていません。
griddata(points,values, (dimension_x,dimension_y), method='nearest/linear/cubic')
使用できる別の関数や、順序を制御できるリース二乗フィットを開発する方法についてのアイデアはありますか?
Griddataはスプラインフィッティングを使用します。 3次スプラインは、3次多項式と同じものではありません(代わりに、すべての点で異なる3次多項式です)。
2D、3次多項式をデータに適合させたい場合は、次のようにして、データポイントのallを使用して16個の係数を推定します。
import itertools
import numpy as np
import matplotlib.pyplot as plt
def main():
# Generate Data...
numdata = 100
x = np.random.random(numdata)
y = np.random.random(numdata)
z = x**2 + y**2 + 3*x**3 + y + np.random.random(numdata)
# Fit a 3rd order, 2d polynomial
m = polyfit2d(x,y,z)
# Evaluate it on a grid...
nx, ny = 20, 20
xx, yy = np.meshgrid(np.linspace(x.min(), x.max(), nx),
np.linspace(y.min(), y.max(), ny))
zz = polyval2d(xx, yy, m)
# Plot
plt.imshow(zz, extent=(x.min(), y.max(), x.max(), y.min()))
plt.scatter(x, y, c=z)
plt.show()
def polyfit2d(x, y, z, order=3):
ncols = (order + 1)**2
G = np.zeros((x.size, ncols))
ij = itertools.product(range(order+1), range(order+1))
for k, (i,j) in enumerate(ij):
G[:,k] = x**i * y**j
m, _, _, _ = np.linalg.lstsq(G, z)
return m
def polyval2d(x, y, m):
order = int(np.sqrt(len(m))) - 1
ij = itertools.product(range(order+1), range(order+1))
z = np.zeros_like(x)
for a, (i,j) in Zip(m, ij):
z += a * x**i * y**j
return z
main()
次のpolyfit2d
の実装では、使用可能なnumpyメソッドnumpy.polynomial.polynomial.polyvander2d
およびnumpy.polynomial.polynomial.polyval2d
を使用します。
#!/usr/bin/env python3
import unittest
def polyfit2d(x, y, f, deg):
from numpy.polynomial import polynomial
import numpy as np
x = np.asarray(x)
y = np.asarray(y)
f = np.asarray(f)
deg = np.asarray(deg)
vander = polynomial.polyvander2d(x, y, deg)
vander = vander.reshape((-1,vander.shape[-1]))
f = f.reshape((vander.shape[0],))
c = np.linalg.lstsq(vander, f)[0]
return c.reshape(deg+1)
class MyTest(unittest.TestCase):
def setUp(self):
return self
def test_1(self):
self._test_fit(
[-1,2,3],
[ 4,5,6],
[[1,2,3],[4,5,6],[7,8,9]],
[2,2])
def test_2(self):
self._test_fit(
[-1,2],
[ 4,5],
[[1,2],[4,5]],
[1,1])
def test_3(self):
self._test_fit(
[-1,2,3],
[ 4,5],
[[1,2],[4,5],[7,8]],
[2,1])
def test_4(self):
self._test_fit(
[-1,2,3],
[ 4,5],
[[1,2],[4,5],[0,0]],
[2,1])
def test_5(self):
self._test_fit(
[-1,2,3],
[ 4,5],
[[1,2],[4,5],[0,0]],
[1,1])
def _test_fit(self, x, y, c, deg):
from numpy.polynomial import polynomial
import numpy as np
X = np.array(np.meshgrid(x,y))
f = polynomial.polyval2d(X[0], X[1], c)
c1 = polyfit2d(X[0], X[1], f, deg)
np.testing.assert_allclose(c1,
np.asarray(c)[:deg[0]+1,:deg[1]+1],
atol=1e-12)
unittest.main()
最小二乗 の原理に従い、引数mを引数m_1と引数m_2に移動しながら、Kingtonのスタイルを模倣します。
import numpy as np
import matplotlib.pyplot as plt
import itertools
# w = (Phi^T Phi)^{-1} Phi^T t
# where Phi_{k, j + i (m_2 + 1)} = x_k^i y_k^j,
# t_k = z_k,
# i = 0, 1, ..., m_1,
# j = 0, 1, ..., m_2,
# k = 0, 1, ..., n - 1
def polyfit2d(x, y, z, m_1, m_2):
# Generate Phi by setting Phi as x^i y^j
nrows = x.size
ncols = (m_1 + 1) * (m_2 + 1)
Phi = np.zeros((nrows, ncols))
ij = itertools.product(range(m_1 + 1), range(m_2 + 1))
for h, (i, j) in enumerate(ij):
Phi[:, h] = x ** i * y ** j
# Generate t by setting t as Z
t = z
# Generate w by solving (Phi^T Phi) w = Phi^T t
w = np.linalg.solve(Phi.T.dot(Phi), (Phi.T.dot(t)))
return w
# t' = Phi' w
# where Phi'_{k, j + i (m_2 + 1)} = x'_k^i y'_k^j
# t'_k = z'_k,
# i = 0, 1, ..., m_1,
# j = 0, 1, ..., m_2,
# k = 0, 1, ..., n' - 1
def polyval2d(x_, y_, w, m_1, m_2):
# Generate Phi' by setting Phi' as x'^i y'^j
nrows = x_.size
ncols = (m_1 + 1) * (m_2 + 1)
Phi_ = np.zeros((nrows, ncols))
ij = itertools.product(range(m_1 + 1), range(m_2 + 1))
for h, (i, j) in enumerate(ij):
Phi_[:, h] = x_ ** i * y_ ** j
# Generate t' by setting t' as Phi' w
t_ = Phi_.dot(w)
# Generate z_ by setting z_ as t_
z_ = t_
return z_
if __name__ == "__main__":
# Generate x, y, z
n = 100
x = np.random.random(n)
y = np.random.random(n)
z = x ** 2 + y ** 2 + 3 * x ** 3 + y + np.random.random(n)
# Generate w
w = polyfit2d(x, y, z, m_1=3, m_2=2)
# Generate x', y', z'
n_ = 1000
x_, y_ = np.meshgrid(np.linspace(x.min(), x.max(), n_),
np.linspace(y.min(), y.max(), n_))
z_ = np.zeros((n_, n_))
for i in range(n_):
z_[i, :] = polyval2d(x_[i, :], y_[i, :], w, m_1=3, m_2=2)
# Plot
plt.imshow(z_, extent=(x_.min(), y_.max(), x_.max(), y_.min()))
plt.scatter(x, y, c=z)
plt.show()
誰かが特定の次数の多項式を当てはめることを探している場合(最大の累乗がorder
に等しい多項式ではなく、受け入れられた回答のpolyfit
とpolyval
:
の代わりに:
_ij = itertools.product(range(order+1), range(order+1))
_
これは、_order=2
_が[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]
(別名4次多項式まで)を与える場合、次を使用できます。
_def xy_powers(order):
powers = itertools.product(range(order + 1), range(order + 1))
return [tup for tup in powers if sum(tup) <= order]
_
これにより、_order=2
_に対して[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)]
が返されます。