web-dev-qa-db-ja.com

Python / Pandasを使用して日付フィールドから月ごとにグループ化する方法

次のようなデータフレームdfがあります。

| date      | Revenue |
|-----------|---------|
| 6/2/2017  | 100     |
| 5/23/2017 | 200     |
| 5/20/2017 | 300     |
| 6/22/2017 | 400     |
| 6/21/2017 | 500     |

上記のデータを月別にグループ化して、出力を取得する必要があります。

| date | SUM(Revenue) |
|------|--------------|
| May  | 500          |
| June | 1000         |

私はこのコードを試しましたが、うまくいきませんでした:

df.groupby(month('date')).agg({'Revenue': 'sum'})

PandasまたはNumpyのみを使用し、追加のライブラリは使用しません

11
Symphony

これを試して:

In [6]: df['date'] = pd.to_datetime(df['date'])

In [7]: df
Out[7]: 
        date  Revenue
0 2017-06-02      100
1 2017-05-23      200
2 2017-05-20      300
3 2017-06-22      400
4 2017-06-21      500



In [59]: df.groupby(df['date'].dt.strftime('%B'))['Revenue'].sum().sort_values()
Out[59]: 
date
May      500
June    1000
24
shivsn

pandas Grouper

df = pd.DataFrame({'date':['6/2/2017','5/23/2017','5/20/2017','6/22/2017','6/21/2017'],'Revenue':[100,200,300,400,500]})
df.date = pd.to_datetime(df.date)
dg = df.groupby(pd.Grouper(key='date', freq='1M')).sum() # groupby each 1 month
dg.index = dg.index.strftime('%B')

     Revenue
 May    500
June    1000
14
qbzenker