私はPandas別のテーブルに保存された日付値に基づいて時間ベースの集計を計算しようとしています。
最初のテーブルtable_aの上部は次のようになります。
COMPANY_ID DATE MEASURE
1 2010-01-01 00:00:00 10
1 2010-01-02 00:00:00 10
1 2010-01-03 00:00:00 10
1 2010-01-04 00:00:00 10
1 2010-01-05 00:00:00 10
テーブルを作成するコードは次のとおりです。
table_a = pd.concat(\
[pd.DataFrame({'DATE': pd.date_range("01/01/2010", "12/31/2010", freq="D"),\
'COMPANY_ID': 1 , 'MEASURE': 10}),\
pd.DataFrame({'DATE': pd.date_range("01/01/2010", "12/31/2010", freq="D"),\
'COMPANY_ID': 2 , 'MEASURE': 10})])
2番目のテーブルtable_bは次のようになります。
COMPANY END_DATE
1 2010-03-01 00:00:00
1 2010-06-02 00:00:00
2 2010-03-01 00:00:00
2 2010-06-02 00:00:00
それを作成するコードは次のとおりです。
table_b = pd.DataFrame({'END_DATE':pd.to_datetime(['03/01/2010','06/02/2010','03/01/2010','06/02/2010']),\
'COMPANY':(1,1,2,2)})
Table_bのEND_DATEより前の30日間ごとに、各COMPANY_IDのメジャー列の合計を取得できるようにします。
これは(私が思うに)SQLと同等です:
select
b.COMPANY_ID,
b.DATE
sum(a.MEASURE) AS MEASURE_TO_END_DATE
from table_a a, table_b b
where a.COMPANY = b.COMPANY and
a.DATE < b.DATE and
a.DATE > b.DATE - 30
group by b.COMPANY;
助けてくれてありがとう
さて、私はいくつかの方法を考えることができます。 (1)本質的にcompany
でマージしてデータフレームを爆破し、マージ後30日間のウィンドウでフィルタリングします。これは高速ですが、大量のメモリを使用する可能性があります。 (2)30日間のウィンドウでのマージとフィルタリングをgroupbyに移動します。これにより、グループごとにマージが行われるため、速度は遅くなりますが、使用するメモリは少なくなります
オプション#1
データが次のようになっていると仮定します(サンプルデータを拡張しました)。
print df
company date measure
0 0 2010-01-01 10
1 0 2010-01-15 10
2 0 2010-02-01 10
3 0 2010-02-15 10
4 0 2010-03-01 10
5 0 2010-03-15 10
6 0 2010-04-01 10
7 1 2010-03-01 5
8 1 2010-03-15 5
9 1 2010-04-01 5
10 1 2010-04-15 5
11 1 2010-05-01 5
12 1 2010-05-15 5
print windows
company end_date
0 0 2010-02-01
1 0 2010-03-15
2 1 2010-04-01
3 1 2010-05-15
30日間のウィンドウの開始日を作成します。
windows['beg_date'] = (windows['end_date'].values.astype('datetime64[D]') -
np.timedelta64(30,'D'))
print windows
company end_date beg_date
0 0 2010-02-01 2010-01-02
1 0 2010-03-15 2010-02-13
2 1 2010-04-01 2010-03-02
3 1 2010-05-15 2010-04-15
マージを実行し、date
がbeg_date
およびend_date
に含まれるかどうかに基づいて選択します。
df = df.merge(windows,on='company',how='left')
df = df[(df.date >= df.beg_date) & (df.date <= df.end_date)]
print df
company date measure end_date beg_date
2 0 2010-01-15 10 2010-02-01 2010-01-02
4 0 2010-02-01 10 2010-02-01 2010-01-02
7 0 2010-02-15 10 2010-03-15 2010-02-13
9 0 2010-03-01 10 2010-03-15 2010-02-13
11 0 2010-03-15 10 2010-03-15 2010-02-13
16 1 2010-03-15 5 2010-04-01 2010-03-02
18 1 2010-04-01 5 2010-04-01 2010-03-02
21 1 2010-04-15 5 2010-05-15 2010-04-15
23 1 2010-05-01 5 2010-05-15 2010-04-15
25 1 2010-05-15 5 2010-05-15 2010-04-15
company
およびend_date
でグループ化することにより、30日間のウィンドウの合計を計算できます。
print df.groupby(['company','end_date']).sum()
measure
company end_date
0 2010-02-01 20
2010-03-15 30
1 2010-04-01 10
2010-05-15 15
オプション#2すべてのマージをgroupbyに移動します。これはメモリ上ではより良いはずですが、私ははるかに遅いと思うでしょう:
windows['beg_date'] = (windows['end_date'].values.astype('datetime64[D]') -
np.timedelta64(30,'D'))
def cond_merge(g,windows):
g = g.merge(windows,on='company',how='left')
g = g[(g.date >= g.beg_date) & (g.date <= g.end_date)]
return g.groupby('end_date')['measure'].sum()
print df.groupby('company').apply(cond_merge,windows)
company end_date
0 2010-02-01 20
2010-03-15 30
1 2010-04-01 10
2010-05-15 15
別のオプションウィンドウが重複しない場合(例のデータのように)、データフレームを爆破せず、非常に高速な代替手段として次のようなことができます:
windows['date'] = windows['end_date']
df = df.merge(windows,on=['company','date'],how='outer')
print df
company date measure end_date
0 0 2010-01-01 10 NaT
1 0 2010-01-15 10 NaT
2 0 2010-02-01 10 2010-02-01
3 0 2010-02-15 10 NaT
4 0 2010-03-01 10 NaT
5 0 2010-03-15 10 2010-03-15
6 0 2010-04-01 10 NaT
7 1 2010-03-01 5 NaT
8 1 2010-03-15 5 NaT
9 1 2010-04-01 5 2010-04-01
10 1 2010-04-15 5 NaT
11 1 2010-05-01 5 NaT
12 1 2010-05-15 5 2010-05-15
このマージにより、基本的にウィンドウの終了日がデータフレームに挿入され、終了日を(グループごとに)埋め戻すことで、集計ウィンドウを簡単に作成できる構造が得られます。
df['end_date'] = df.groupby('company')['end_date'].apply(lambda x: x.bfill())
print df
company date measure end_date
0 0 2010-01-01 10 2010-02-01
1 0 2010-01-15 10 2010-02-01
2 0 2010-02-01 10 2010-02-01
3 0 2010-02-15 10 2010-03-15
4 0 2010-03-01 10 2010-03-15
5 0 2010-03-15 10 2010-03-15
6 0 2010-04-01 10 NaT
7 1 2010-03-01 5 2010-04-01
8 1 2010-03-15 5 2010-04-01
9 1 2010-04-01 5 2010-04-01
10 1 2010-04-15 5 2010-05-15
11 1 2010-05-01 5 2010-05-15
12 1 2010-05-15 5 2010-05-15
df = df[df.end_date.notnull()]
df['beg_date'] = (df['end_date'].values.astype('datetime64[D]') -
np.timedelta64(30,'D'))
print df
company date measure end_date beg_date
0 0 2010-01-01 10 2010-02-01 2010-01-02
1 0 2010-01-15 10 2010-02-01 2010-01-02
2 0 2010-02-01 10 2010-02-01 2010-01-02
3 0 2010-02-15 10 2010-03-15 2010-02-13
4 0 2010-03-01 10 2010-03-15 2010-02-13
5 0 2010-03-15 10 2010-03-15 2010-02-13
7 1 2010-03-01 5 2010-04-01 2010-03-02
8 1 2010-03-15 5 2010-04-01 2010-03-02
9 1 2010-04-01 5 2010-04-01 2010-03-02
10 1 2010-04-15 5 2010-05-15 2010-04-15
11 1 2010-05-01 5 2010-05-15 2010-04-15
12 1 2010-05-15 5 2010-05-15 2010-04-15
df = df[(df.date >= df.beg_date) & (df.date <= df.end_date)]
print df.groupby(['company','end_date']).sum()
measure
company end_date
0 2010-02-01 20
2010-03-15 30
1 2010-04-01 10
2010-05-15 15
別の方法として、最初のデータフレームを毎日のデータにリサンプリングしてから、30日間の期間でrolling_sumsを計算します。興味のある最後の日付を選択します。これは、非常に多くのメモリを消費する可能性があります。