web-dev-qa-db-ja.com

Python pandasデータフレームは欠落データを補間します

次のようなデータセットがあります。残りのデータを補間しようとしている月の最後の日のデータしかありませんが、それは正しい方法ですか?

Date  Australia China
2011-01-01  NaN   NaN
2011-01-02  NaN   NaN
-           -     -
-           -     -
2011-01-31  4.75  5.81
2011-02-01  NaN   NaN
2011-02-02  NaN   NaN
-           -     -
-           -     -
2011-02-28  4.75  5.81
2011-03-01  NaN   NaN
2011-03-02  NaN   NaN
-           -     -
-           -     -
2011-03-31  4.75  6.06
2011-04-01  NaN   NaN
2011-04-02  NaN   NaN
-           -     -
-           -     -
2011-04-30  4.75  6.06

このデータフレームを補間して欠落しているNaN値を見つけるために、次のコードを使用しています

import pandas as pd
df = pd.read_csv("data.csv", index_col="Date")
df.index = pd.DatetimeIndex(df.index)
df.interpolate(method='linear', axis=0).ffill().bfill()

しかし、「TypeError:すべてのNaNで補間できません」というエラーが発生します。

ここで何が間違っている可能性がありますか、どうすればこれを修正できますか?

ありがとう。

8
Unnikrishnan

dataframe :によってfloatastypeに変換してみることができます。

_import pandas as pd

df = pd.read_csv("data.csv", index_col=['Date'], parse_dates=['Date'])

print df

            Australia  China
Date                        
2011-01-31       4.75   5.81
2011-02-28       4.75   5.81
2011-03-31       4.75   6.06
2011-04-30       4.75   6.06

df = df.reindex(pd.date_range("2011-01-01", "2011-10-31"), fill_value="NaN")

#convert to float
df = df.astype(float)

df = df.interpolate(method='linear', axis=0).ffill().bfill()
_
_print df

            Australia  China
2011-01-01       4.75   5.81
2011-01-02       4.75   5.81
2011-01-03       4.75   5.81
2011-01-04       4.75   5.81
2011-01-05       4.75   5.81
2011-01-06       4.75   5.81
2011-01-07       4.75   5.81
2011-01-08       4.75   5.81
2011-01-09       4.75   5.81
2011-01-10       4.75   5.81
2011-01-11       4.75   5.81
2011-01-12       4.75   5.81
2011-01-13       4.75   5.81
2011-01-14       4.75   5.81
2011-01-15       4.75   5.81
2011-01-16       4.75   5.81
2011-01-17       4.75   5.81
2011-01-18       4.75   5.81
2011-01-19       4.75   5.81
2011-01-20       4.75   5.81
2011-01-21       4.75   5.81
2011-01-22       4.75   5.81
2011-01-23       4.75   5.81
2011-01-24       4.75   5.81
2011-01-25       4.75   5.81
2011-01-26       4.75   5.81
2011-01-27       4.75   5.81
2011-01-28       4.75   5.81
2011-01-29       4.75   5.81
2011-01-30       4.75   5.81
...               ...    ...
2011-10-02       4.75   6.06
2011-10-03       4.75   6.06
2011-10-04       4.75   6.06
2011-10-05       4.75   6.06
2011-10-06       4.75   6.06
2011-10-07       4.75   6.06
2011-10-08       4.75   6.06
2011-10-09       4.75   6.06
2011-10-10       4.75   6.06
2011-10-11       4.75   6.06
2011-10-12       4.75   6.06
2011-10-13       4.75   6.06
2011-10-14       4.75   6.06
2011-10-15       4.75   6.06
2011-10-16       4.75   6.06
2011-10-17       4.75   6.06
2011-10-18       4.75   6.06
2011-10-19       4.75   6.06
2011-10-20       4.75   6.06
2011-10-21       4.75   6.06
2011-10-22       4.75   6.06
2011-10-23       4.75   6.06
2011-10-24       4.75   6.06
2011-10-25       4.75   6.06
2011-10-26       4.75   6.06
2011-10-27       4.75   6.06
2011-10-28       4.75   6.06
2011-10-29       4.75   6.06
2011-10-30       4.75   6.06
2011-10-31       4.75   6.06

[304 rows x 2 columns]
_

また、NaNdataframeの最初の行にのみ存在するため、ffill()を省略できます。

_df = df.interpolate(method='linear', axis=0).ffill().bfill()
_

に:

_df = df.interpolate(method='linear', axis=0).bfill()
_
7
jezrael

補間する前に、データセットからNaNを削除してみてください。

import pandas as pd
df = pd.read_csv("data.csv", index_col="Date")
df = df.dropna()
df.index = pd.DatetimeIndex(df.index)
df.interpolate(method='linear', axis=0).ffill().bfill()
1
station