PYTORCHトランスを使用してBERTモデルを訓練する(チュートリアルの後(ここで) ここ )。
チュートリアルの次の文
loss = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)
_
につながる
TypeError: forward() got an unexpected keyword argument 'labels'
_
これが完全なエラーです。
TypeError Traceback (most recent call last)
<ipython-input-53-56aa2f57dcaf> in <module>
26 optimizer.zero_grad()
27 # Forward pass
---> 28 loss = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)
29 train_loss_set.append(loss.item())
30 # Backward pass
~/anaconda3/envs/systreviewclassifi/lib/python3.6/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
539 result = self._slow_forward(*input, **kwargs)
540 else:
--> 541 result = self.forward(*input, **kwargs)
542 for hook in self._forward_hooks.values():
543 hook_result = hook(self, input, result)
TypeError: forward() got an unexpected keyword argument 'labels'
_
私はどんな種類の議論()関数が期待するかを理解することはできません。
同様の問題があります ここ ですが、私はまだ解決策が何であるかを取得しません。
システムインフォメーション:
私が知っている限りでは、BertModelはforward()
関数にラベルを取りません。 forward 関数パラメータをチェックしてください。
シーケンス分類タスクのBertModelを微調整しようとしていると思われると、APIは BertforSequenceClassification です。あなたがそのworford()関数定義を見ることができるように:
def forward(self, input_ids, attention_mask=None, token_type_ids=None,
position_ids=None, head_mask=None, labels=None):
_
PROFERD()メソッドは以下のものを返します。
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Classification (or regression if config.num_labels==1) loss.
**logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
Classification (or regression if config.num_labels==1) scores (before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
_
お役に立てれば!