web-dev-qa-db-ja.com

rowspanとcolspanでテーブルを解析する方法

まず、 rowspanとcolspanを使用してテーブルを解析する を読みました。私も質問に答えました。これを重複としてマークする前に読んでください。

<table border="1">
  <tr>
    <th>A</th>
    <th>B</th>
  </tr>
  <tr>
    <td rowspan="2">C</td>
    <td rowspan="1">D</td>
  </tr>
  <tr>
    <td>E</td>
    <td>F</td>
  </tr>
  <tr>
    <td>G</td>
    <td>H</td>
  </tr>
</table>

それはのようにレンダリングされます

+---+---+---+
| A | B |   |
+---+---+   |
|   | D |   |
+ C +---+---+
|   | E | F |
+---+---+---+
| G | H |   |
+---+---+---+
<table border="1">
  <tr>
    <th>A</th>
    <th>B</th>
  </tr>
  <tr>
    <td rowspan="2">C</td>
    <td rowspan="2">D</td>
  </tr>
  <tr>
    <td>E</td>
    <td>F</td>
  </tr>
  <tr>
    <td>G</td>
    <td>H</td>
  </tr>
</table>

ただし、これはこのようにレンダリングされます。

+---+---+-------+
| A | B |       |
+---+---+-------+
|   |   |       |
| C | D +---+---+
|   |   | E | F |
+---+---+---+---+
| G | H |       |
+---+---+---+---+

前の回答のコードでは、最初の行にすべての列が定義されているテーブルのみを解析できます。

def table_to_2d(table_tag):
    rows = table_tag("tr")
    cols = rows[0](["td", "th"])
    table = [[None] * len(cols) for _ in range(len(rows))]
    for row_i, row in enumerate(rows):
        for col_i, col in enumerate(row(["td", "th"])):
            insert(table, row_i, col_i, col)
    return table


def insert(table, row, col, element):
    if row >= len(table) or col >= len(table[row]):
        return
    if table[row][col] is None:
        value = element.get_text()
        table[row][col] = value
        if element.has_attr("colspan"):
            span = int(element["colspan"])
            for i in range(1, span):
                table[row][col+i] = value
        if element.has_attr("rowspan"):
            span = int(element["rowspan"])
            for i in range(1, span):
                table[row+i][col] = value
    else:
        insert(table, row, col + 1, element)

soup = BeautifulSoup('''
    <table>
        <tr><th>1</th><th>2</th><th>5</th></tr>
        <tr><td rowspan="2">3</td><td colspan="2">4</td></tr>
        <tr><td>6</td><td>7</td></tr>
    </table>''', 'html.parser')
print(table_to_2d(soup.table))

私の質問は、ブラウザでのレンダリング方法を正確に表す2D配列にテーブルを解析する方法です。または、誰かがブラウザがテーブルをどのようにレンダリングするかについても説明できます。

11
Joshua

tdセルやthセルだけを数えることはできません。テーブル全体をスキャンして、各行の列数を取得し、その数に前の行のアクティブな行スパンを追加する必要があります。

行スパンを持つテーブルを解析する別のシナリオ 列番号ごとの行スパン数を追跡して、異なるセルからのデータが正しい列に確実に到達するようにしました。ここでも同様の手法を使用できます。

最初の列をカウントします。最高数のみを保持します。 2以上の行スパン数のリストを保持し、処理する列のすべての行のそれぞれから1を引きます。これにより、各行に「追加」の列がいくつあるかがわかります。最大の列数を取得して、出力行列を作成します。

次に、行とセルをもう一度ループし、今回は、列番号からアクティブカウントへのディクショナリマッピングで行スパンを追跡します。この場合も、値が2であるものは何でも、次の行に繰り越します。次に、アクティブな行スパンを考慮して列番号をシフトします。列0でアクティブな行スパンがあった場合、行の最初のtdは実際には2番目になります。

コードは、スパンされた列と行の値を繰り返し出力にコピーします。与えられたセルのcolspanrowspan番号にループを作成して(それぞれデフォルトでは1に設定されています)、値を複数回コピーすることで同じことを実現しました。重複するセルは無視しています。 HTMLテーブル仕様 は、重複するセルはエラーであり、競合を解決するのはユーザーエージェントの責任であることを示します。以下のコードでは、colspanがrowspanセルよりも優先されます。

from itertools import product

def table_to_2d(table_tag):
    rowspans = []  # track pending rowspans
    rows = table_tag.find_all('tr')

    # first scan, see how many columns we need
    colcount = 0
    for r, row in enumerate(rows):
        cells = row.find_all(['td', 'th'], recursive=False)
        # count columns (including spanned).
        # add active rowspans from preceding rows
        # we *ignore* the colspan value on the last cell, to prevent
        # creating 'phantom' columns with no actual cells, only extended
        # colspans. This is achieved by hardcoding the last cell width as 1. 
        # a colspan of 0 means “fill until the end” but can really only apply
        # to the last cell; ignore it elsewhere. 
        colcount = max(
            colcount,
            sum(int(c.get('colspan', 1)) or 1 for c in cells[:-1]) + len(cells[-1:]) + len(rowspans))
        # update rowspan bookkeeping; 0 is a span to the bottom. 
        rowspans += [int(c.get('rowspan', 1)) or len(rows) - r for c in cells]
        rowspans = [s - 1 for s in rowspans if s > 1]

    # it doesn't matter if there are still rowspan numbers 'active'; no extra
    # rows to show in the table means the larger than 1 rowspan numbers in the
    # last table row are ignored.

    # build an empty matrix for all possible cells
    table = [[None] * colcount for row in rows]

    # fill matrix from row data
    rowspans = {}  # track pending rowspans, column number mapping to count
    for row, row_elem in enumerate(rows):
        span_offset = 0  # how many columns are skipped due to row and colspans 
        for col, cell in enumerate(row_elem.find_all(['td', 'th'], recursive=False)):
            # adjust for preceding row and colspans
            col += span_offset
            while rowspans.get(col, 0):
                span_offset += 1
                col += 1

            # fill table data
            rowspan = rowspans[col] = int(cell.get('rowspan', 1)) or len(rows) - row
            colspan = int(cell.get('colspan', 1)) or colcount - col
            # next column is offset by the colspan
            span_offset += colspan - 1
            value = cell.get_text()
            for drow, dcol in product(range(rowspan), range(colspan)):
                try:
                    table[row + drow][col + dcol] = value
                    rowspans[col + dcol] = rowspan
                except IndexError:
                    # rowspan or colspan outside the confines of the table
                    pass

        # update rowspan bookkeeping
        rowspans = {c: s - 1 for c, s in rowspans.items() if s > 1}

    return table

これにより、サンプルテーブルが正しく解析されます。

>>> from pprint import pprint
>>> pprint(table_to_2d(soup.table), width=30)
[['1', '2', '5'],
 ['3', '4', '4'],
 ['3', '6', '7']]

他の例を処理します。最初のテーブル:

>>> table1 = BeautifulSoup('''
... <table border="1">
...   <tr>
...     <th>A</th>
...     <th>B</th>
...   </tr>
...   <tr>
...     <td rowspan="2">C</td>
...     <td rowspan="1">D</td>
...   </tr>
...   <tr>
...     <td>E</td>
...     <td>F</td>
...   </tr>
...   <tr>
...     <td>G</td>
...     <td>H</td>
...   </tr>
... </table>''', 'html.parser')
>>> pprint(table_to_2d(table1.table), width=30)
[['A', 'B', None],
 ['C', 'D', None],
 ['C', 'E', 'F'],
 ['G', 'H', None]]

そして2番目:

>>> table2 = BeautifulSoup('''
... <table border="1">
...   <tr>
...     <th>A</th>
...     <th>B</th>
...   </tr>
...   <tr>
...     <td rowspan="2">C</td>
...     <td rowspan="2">D</td>
...   </tr>
...   <tr>
...     <td>E</td>
...     <td>F</td>
...   </tr>
...   <tr>
...     <td>G</td>
...     <td>H</td>
...   </tr>
... </table>
... ''', 'html.parser')
>>> pprint(table_to_2d(table2.table), width=30)
[['A', 'B', None, None],
 ['C', 'D', None, None],
 ['C', 'D', 'E', 'F'],
 ['G', 'H', None, None]]

最後に重要なことですが、コードは実際のテーブルを超えて広がるスパンを正しく処理し、"0"スパン(両端まで)、次の例のように:

<table border="1">
  <tr>
    <td rowspan="3">A</td>
    <td rowspan="0">B</td>
    <td>C</td>
    <td colspan="2">D</td>
  </tr>
  <tr>
    <td colspan="0">E</td>
  </tr>
</table>

Rowspanとcolspanの値には3と5があると思われる場合でも、4つのセルの2つの行があります。

+---+---+---+---+
|   |   | C | D |
| A | B +---+---+
|   |   |   E   |
+---+---+-------+

このようなオーバースパンは、ブラウザと同じように処理されます。それらは無視され、0スパンは残りの行または列まで拡張されます。

>>> span_demo = BeautifulSoup('''
... <table border="1">
...   <tr>
...     <td rowspan="3">A</td>
...     <td rowspan="0">B</td>
...     <td>C</td>
...     <td colspan="2">D</td>
...   </tr>
...   <tr>
...     <td colspan="0">E</td>
...   </tr>
... </table>''', 'html.parser')
>>> pprint(table_to_2d(span_demo.table), width=30)
[['A', 'B', 'C', 'D'],
 ['A', 'B', 'E', 'E']]
12
Martijn Pieters

重要なことに注意してください Martijn Pieters ソリューションは、rowspan属性とcolspan属性を同時に持つセルの場合を考慮していません。例えば。

<table border="1">
    <tr>
        <td rowspan="3" colspan="3">A</td>
        <td>B</td>
        <td>C</td>
        <td>D</td>
    </tr>
    <tr>
        <td colspan="3">E</td>
    </tr>
    <tr>
        <td colspan="1">E</td>
        <td>C</td>
        <td>C</td>
    </tr>
    <tr>
        <td colspan="1">E</td>
        <td>C</td>
        <td>C</td>
        <td>C</td>
        <td>C</td>
        <td>C</td>
    </tr>
</table>

このテーブルは

+-----------+---+---+---+
| A         | B | C | D |
|           +---+---+---+
|           | E         |
|           +---+---+---+
|           | E | C | C |
+---+---+---+---+---+---+
| E | C | C | C | C | C |
+---+---+---+---+---+---+

しかし、関数を適用すると、

[['A', 'A', 'A', 'B', 'C', 'D'],
 ['A', 'E', 'E', 'E', None, None],
 ['A', 'E', 'C', 'C', None, None],
 ['E', 'C', 'C', 'C', 'C', 'C']]

いくつかのEdgeケースがあるかもしれませんが、rowspanとcolspanのproductのセルにrowspanブックキーピングを拡張します。

   for drow, dcol in product(range(rowspan), range(colspan)):
            try:
                table[row + drow][col + dcol] = value
                rowspans[col + dcol] = rowspan
            except IndexError:
                # rowspan or colspan outside the confines of the table
                pass

このスレッドの例で機能しているようで、上の表では出力されます

[['A', 'A', 'A', 'B', 'C', 'D'],
 ['A', 'A', 'A', 'E', 'E', 'E'],
 ['A', 'A', 'A', 'E', 'C', 'C'],
 ['E', 'C', 'C', 'C', 'C', 'C']]
2
hellpanderr

トラバースの通常の方法を使用して、パーサータイプをlxmlに変更します。

soup = BeautifulSoup(resp.text, "lxml")

これを解析する通常の方法に進みます。

0
ChandyShot