私はしばらくの間、scipy.optimize.curve_fitを使用して指数関数をいくつかのデータに当てはめようとしましたが、本当に難しいのです。私はこれがうまくいかない理由を本当に見ることはできませんが、それは単にストレートラインを生成するだけで、理由はわかりません!
どんな助けでも大歓迎です
from __future__ import division
import numpy
from scipy.optimize import curve_fit
import matplotlib.pyplot as pyplot
def func(x,a,b,c):
return a*numpy.exp(-b*x)-c
yData = numpy.load('yData.npy')
xData = numpy.load('xData.npy')
trialX = numpy.linspace(xData[0],xData[-1],1000)
# Fit a polynomial
fitted = numpy.polyfit(xData, yData, 10)[::-1]
y = numpy.zeros(len(trailX))
for i in range(len(fitted)):
y += fitted[i]*trialX**i
# Fit an exponential
popt, pcov = curve_fit(func, xData, yData)
yEXP = func(trialX, *popt)
pyplot.figure()
pyplot.plot(xData, yData, label='Data', marker='o')
pyplot.plot(trialX, yEXP, 'r-',ls='--', label="Exp Fit")
pyplot.plot(trialX, y, label = '10 Deg Poly')
pyplot.legend()
pyplot.show()
xData = [1e-06, 2e-06, 3e-06, 4e-06,
5e-06, 6e-06, 7e-06, 8e-06,
9e-06, 1e-05, 2e-05, 3e-05,
4e-05, 5e-05, 6e-05, 7e-05,
8e-05, 9e-05, 0.0001, 0.0002,
0.0003, 0.0004, 0.0005, 0.0006,
0.0007, 0.0008, 0.0009, 0.001,
0.002, 0.003, 0.004, 0.005,
0.006, 0.007, 0.008, 0.009, 0.01]
yData =
[6.37420666067e-09, 1.13082012115e-08,
1.52835756975e-08, 2.19214493931e-08, 2.71258852882e-08, 3.38556130078e-08, 3.55765277358e-08,
4.13818145846e-08, 4.72543475372e-08, 4.85834751151e-08, 9.53876562077e-08, 1.45110636413e-07,
1.83066627931e-07, 2.10138415308e-07, 2.43503982686e-07, 2.72107045549e-07, 3.02911771395e-07,
3.26499455951e-07, 3.48319349445e-07, 5.13187669283e-07, 5.98480176303e-07, 6.57028222701e-07,
6.98347073045e-07, 7.28699930335e-07, 7.50686502279e-07, 7.7015576866e-07, 7.87147246927e-07,
7.99607141001e-07, 8.61398763228e-07, 8.84272900407e-07, 8.96463883243e-07, 9.04105135329e-07,
9.08443443149e-07, 9.12391264185e-07, 9.150842683e-07, 9.16878548643e-07, 9.18389990067e-07]
数値アルゴリズムは、極端に小さい(または大きい)数値が与えられない場合に、よりうまく機能する傾向があります。
この場合、グラフには、データのx値とy値が非常に小さいことが示されます。それらをスケーリングすると、適合度が著しく向上します。
xData = np.load('xData.npy')*10**5
yData = np.load('yData.npy')*10**5
from __future__ import division
import os
os.chdir(os.path.expanduser('~/tmp'))
import numpy as np
import scipy.optimize as optimize
import matplotlib.pyplot as plt
def func(x,a,b,c):
return a*np.exp(-b*x)-c
xData = np.load('xData.npy')*10**5
yData = np.load('yData.npy')*10**5
print(xData.min(), xData.max())
print(yData.min(), yData.max())
trialX = np.linspace(xData[0], xData[-1], 1000)
# Fit a polynomial
fitted = np.polyfit(xData, yData, 10)[::-1]
y = np.zeros(len(trialX))
for i in range(len(fitted)):
y += fitted[i]*trialX**i
# Fit an exponential
popt, pcov = optimize.curve_fit(func, xData, yData)
print(popt)
yEXP = func(trialX, *popt)
plt.figure()
plt.plot(xData, yData, label='Data', marker='o')
plt.plot(trialX, yEXP, 'r-',ls='--', label="Exp Fit")
plt.plot(trialX, y, label = '10 Deg Poly')
plt.legend()
plt.show()
xData
とyData
を再スケーリングした後、curve_fit
によって返されるパラメーターも再スケーリングする必要があることに注意してください。この場合、a
、b
およびc
をそれぞれ10 ** 5で除算して、元のデータの近似パラメーターを取得する必要があります。
上記に対してあなたが持っているかもしれない1つの異論は、スケーリングがむしろ「慎重に」選ばれなければならないということです。 (読む:スケールのすべての合理的な選択が機能するわけではありません!)
パラメーターの妥当な初期推測を提供することにより、curve_fit
の堅牢性を改善できます。通常、合理的なパラメーター値を求めるために、球種/エンベロープタイプの推測を動機付けることができるデータについてのいくつかのアプリオリ知識があります。
たとえば、curve_fit
を呼び出して
guess = (-1, 0.1, 0)
popt, pcov = optimize.curve_fit(func, xData, yData, guess)
この場合、curve_fit
が成功するスケールの範囲を改善するのに役立ちます。
データの先験的な知識を考慮しないこのソリューションの(わずかな)改善は、次のようになる可能性があります。 curve_fit()によって呼び出されます。これにより、フィッターが機能し、データの元のスケールでパラメーターが返されます。
関連する行は次のとおりです。
popt, pcov = curve_fit(func, xData, yData)
になる:
popt, pcov = curve_fit(func, xData, yData,
diag=(1./xData.mean(),1./yData.mean()) )
このイメージを生成する完全な例は次のとおりです。
from __future__ import division
import numpy
from scipy.optimize import curve_fit
import matplotlib.pyplot as pyplot
def func(x,a,b,c):
return a*numpy.exp(-b*x)-c
xData = numpy.array([1e-06, 2e-06, 3e-06, 4e-06, 5e-06, 6e-06,
7e-06, 8e-06, 9e-06, 1e-05, 2e-05, 3e-05, 4e-05, 5e-05, 6e-05,
7e-05, 8e-05, 9e-05, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005,
0.0006, 0.0007, 0.0008, 0.0009, 0.001, 0.002, 0.003, 0.004, 0.005
, 0.006, 0.007, 0.008, 0.009, 0.01])
yData = numpy.array([6.37420666067e-09, 1.13082012115e-08,
1.52835756975e-08, 2.19214493931e-08, 2.71258852882e-08,
3.38556130078e-08, 3.55765277358e-08, 4.13818145846e-08,
4.72543475372e-08, 4.85834751151e-08, 9.53876562077e-08,
1.45110636413e-07, 1.83066627931e-07, 2.10138415308e-07,
2.43503982686e-07, 2.72107045549e-07, 3.02911771395e-07,
3.26499455951e-07, 3.48319349445e-07, 5.13187669283e-07,
5.98480176303e-07, 6.57028222701e-07, 6.98347073045e-07,
7.28699930335e-07, 7.50686502279e-07, 7.7015576866e-07,
7.87147246927e-07, 7.99607141001e-07, 8.61398763228e-07,
8.84272900407e-07, 8.96463883243e-07, 9.04105135329e-07,
9.08443443149e-07, 9.12391264185e-07, 9.150842683e-07,
9.16878548643e-07, 9.18389990067e-07])
trialX = numpy.linspace(xData[0],xData[-1],1000)
# Fit a polynomial
fitted = numpy.polyfit(xData, yData, 10)[::-1]
y = numpy.zeros(len(trialX))
for i in range(len(fitted)):
y += fitted[i]*trialX**i
# Fit an exponential
popt, pcov = curve_fit(func, xData, yData,
diag=(1./xData.mean(),1./yData.mean()) )
yEXP = func(trialX, *popt)
pyplot.figure()
pyplot.plot(xData, yData, label='Data', marker='o')
pyplot.plot(trialX, yEXP, 'r-',ls='--', label="Exp Fit")
pyplot.plot(trialX, y, label = '10 Deg Poly')
pyplot.legend()
pyplot.show()