TLDR:sklearn.preprocessing.PolynomialFeatures()関数から出力numpy配列のヘッダーを取得する方法
次のコードがあるとしましょう...
import pandas as pd
import numpy as np
from sklearn import preprocessing as pp
a = np.ones(3)
b = np.ones(3) * 2
c = np.ones(3) * 3
input_df = pd.DataFrame([a,b,c])
input_df = input_df.T
input_df.columns=['a', 'b', 'c']
input_df
a b c
0 1 2 3
1 1 2 3
2 1 2 3
poly = pp.PolynomialFeatures(2)
output_nparray = poly.fit_transform(input_df)
print output_nparray
[[ 1. 1. 2. 3. 1. 2. 3. 4. 6. 9.]
[ 1. 1. 2. 3. 1. 2. 3. 4. 6. 9.]
[ 1. 1. 2. 3. 1. 2. 3. 4. 6. 9.]]
3x10マトリックス/ output_nparrayを取得して、a、b、cラベルを上記のデータにどのように関連付けるかをどのように引き継ぐことができますか?
実例、すべて1行で(ここでは、「読みやすさ」は目標ではないと想定しています):
target_feature_names = ['x'.join(['{}^{}'.format(pair[0],pair[1]) for pair in Tuple if pair[1]!=0]) for Tuple in [Zip(input_df.columns,p) for p in poly.powers_]]
output_df = pd.DataFrame(output_nparray, columns = target_feature_names)
Update:@OmerBが指摘したように、今では
get_feature_names
メソッド :
>> poly.get_feature_names(input_df.columns)
['1', 'a', 'b', 'c', 'a^2', 'a b', 'a c', 'b^2', 'b c', 'c^2']
scikit-learn 0.18に気の利いた get_feature_names()
メソッドが追加されました!
>> input_df.columns
Index(['a', 'b', 'c'], dtype='object')
>> poly.fit_transform(input_df)
array([[ 1., 1., 2., 3., 1., 2., 3., 4., 6., 9.],
[ 1., 1., 2., 3., 1., 2., 3., 4., 6., 9.],
[ 1., 1., 2., 3., 1., 2., 3., 4., 6., 9.]])
>> poly.get_feature_names(input_df.columns)
['1', 'a', 'b', 'c', 'a^2', 'a b', 'a c', 'b^2', 'b c', 'c^2']
Sklearnはそれ自体でDataFrameから読み取らないため、列名を指定する必要があることに注意してください。
これは機能します:
def PolynomialFeatures_labeled(input_df,power):
'''Basically this is a cover for the sklearn preprocessing function.
The problem with that function is if you give it a labeled dataframe, it ouputs an unlabeled dataframe with potentially
a whole bunch of unlabeled columns.
Inputs:
input_df = Your labeled pandas dataframe (list of x's not raised to any power)
power = what order polynomial you want variables up to. (use the same power as you want entered into pp.PolynomialFeatures(power) directly)
Ouput:
Output: This function relies on the powers_ matrix which is one of the preprocessing function's outputs to create logical labels and
outputs a labeled pandas dataframe
'''
poly = pp.PolynomialFeatures(power)
output_nparray = poly.fit_transform(input_df)
powers_nparray = poly.powers_
input_feature_names = list(input_df.columns)
target_feature_names = ["Constant Term"]
for feature_distillation in powers_nparray[1:]:
intermediary_label = ""
final_label = ""
for i in range(len(input_feature_names)):
if feature_distillation[i] == 0:
continue
else:
variable = input_feature_names[i]
power = feature_distillation[i]
intermediary_label = "%s^%d" % (variable,power)
if final_label == "": #If the final label isn't yet specified
final_label = intermediary_label
else:
final_label = final_label + " x " + intermediary_label
target_feature_names.append(final_label)
output_df = pd.DataFrame(output_nparray, columns = target_feature_names)
return output_df
output_df = PolynomialFeatures_labeled(input_df,2)
output_df
Constant Term a^1 b^1 c^1 a^2 a^1 x b^1 a^1 x c^1 b^2 b^1 x c^1 c^2
0 1 1 2 3 1 2 3 4 6 9
1 1 1 2 3 1 2 3 4 6 9
2 1 1 2 3 1 2 3 4 6 9
get_feature_names()
メソッドは適切ですが、すべての変数を_'x1'
_、_'x2'
_、_'x1 x2'
_などとして返します。以下は、get_feature_names()
出力を_'Col_1'
_、_'Col_2'
_、_'Col_1 x Col_2'
_としてフォーマットされた列名のリストにすばやく変換する関数です。
に:
_def PolynomialFeatureNames(sklearn_feature_name_output, df):
"""
This function takes the output from the .get_feature_names() method on the PolynomialFeatures
instance and replaces values with df column names to return output such as 'Col_1 x Col_2'
sklearn_feature_name_output: The list object returned when calling .get_feature_names() on the PolynomialFeatures object
df: Pandas dataframe with correct column names
"""
import re
cols = df.columns.tolist()
feat_map = {'x'+str(num):cat for num, cat in enumerate(cols)}
feat_string = ','.join(sklearn_feature_name_output)
for k,v in feat_map.items():
feat_string = re.sub(fr"\b{k}\b",v,feat_string)
return feat_string.replace(" "," x ").split(',')
interaction = PolynomialFeatures(degree=2)
X_inter = interaction.fit_transform(input_df)
names = PolynomialFeatureNames(interaction.get_feature_names(),input_df)
print(pd.DataFrame(X_inter, columns= names))
_
でる:
_ 1 a b c a^2 a x b a x c b^2 b x c \
0 1.00000 1.00000 2.00000 3.00000 1.00000 2.00000 3.00000 4.00000 6.00000
1 1.00000 1.00000 2.00000 3.00000 1.00000 2.00000 3.00000 4.00000 6.00000
2 1.00000 1.00000 2.00000 3.00000 1.00000 2.00000 3.00000 4.00000 6.00000
c^2
0 9.00000
1 9.00000
2 9.00000
_