私はSpark DataFrame with take(5)top rows with following:を持っています。
[Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=1, value=638.55),
Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=2, value=638.55),
Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=3, value=638.55),
Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=4, value=638.55),
Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=5, value=638.55)]
スキーマは次のように定義されます:
elevDF.printSchema()
root
|-- date: timestamp (nullable = true)
|-- hour: long (nullable = true)
|-- value: double (nullable = true)
「日付」フィールドから年、月、日の値を取得するにはどうすればよいですか?
Spark 1.5なので、多くの日付処理関数を使用できます。
pyspark.sql.functions.year
_pyspark.sql.functions.month
_pyspark.sql.functions.dayofmonth
_pyspark.sql.functions.dayofweek()
pyspark.sql.functions.dayofyear
_pyspark.sql.functions.weekofyear()
_import datetime
from pyspark.sql.functions import year, month, dayofmonth
elevDF = sc.parallelize([
(datetime.datetime(1984, 1, 1, 0, 0), 1, 638.55),
(datetime.datetime(1984, 1, 1, 0, 0), 2, 638.55),
(datetime.datetime(1984, 1, 1, 0, 0), 3, 638.55),
(datetime.datetime(1984, 1, 1, 0, 0), 4, 638.55),
(datetime.datetime(1984, 1, 1, 0, 0), 5, 638.55)
]).toDF(["date", "hour", "value"])
elevDF.select(
year("date").alias('year'),
month("date").alias('month'),
dayofmonth("date").alias('day')
).show()
# +----+-----+---+
# |year|month|day|
# +----+-----+---+
# |1984| 1| 1|
# |1984| 1| 1|
# |1984| 1| 1|
# |1984| 1| 1|
# |1984| 1| 1|
# +----+-----+---+
_
他のRDDと同様に、単純なmap
を使用できます。
_elevDF = sqlContext.createDataFrame(sc.parallelize([
Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=1, value=638.55),
Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=2, value=638.55),
Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=3, value=638.55),
Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=4, value=638.55),
Row(date=datetime.datetime(1984, 1, 1, 0, 0), hour=5, value=638.55)]))
(elevDF
.map(lambda (date, hour, value): (date.year, date.month, date.day))
.collect())
_
結果は次のとおりです。
_[(1984, 1, 1), (1984, 1, 1), (1984, 1, 1), (1984, 1, 1), (1984, 1, 1)]
_
Btw:_datetime.datetime
_はとにかく1時間を保存するので、それを個別に保持することはメモリの浪費のようです。
pyspark.sql.functions
で関数を使用できます:year
、month
、etc
などの関数
ここを参照してください: https://spark.Apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
from pyspark.sql.functions import *
newdf = elevDF.select(year(elevDF.date).alias('dt_year'), month(elevDF.date).alias('dt_month'), dayofmonth(elevDF.date).alias('dt_day'), dayofyear(elevDF.date).alias('dt_dayofy'), hour(elevDF.date).alias('dt_hour'), minute(elevDF.date).alias('dt_min'), weekofyear(elevDF.date).alias('dt_week_no'), unix_timestamp(elevDF.date).alias('dt_int'))
newdf.show()
+-------+--------+------+---------+-------+------+----------+----------+
|dt_year|dt_month|dt_day|dt_dayofy|dt_hour|dt_min|dt_week_no| dt_int|
+-------+--------+------+---------+-------+------+----------+----------+
| 2015| 9| 6| 249| 0| 0| 36|1441497601|
| 2015| 9| 6| 249| 0| 0| 36|1441497601|
| 2015| 9| 6| 249| 0| 0| 36|1441497603|
| 2015| 9| 6| 249| 0| 1| 36|1441497694|
| 2015| 9| 6| 249| 0| 20| 36|1441498808|
| 2015| 9| 6| 249| 0| 20| 36|1441498811|
| 2015| 9| 6| 249| 0| 20| 36|1441498815|