Tensorflowオブジェクト検出APIサンプルを実装しようとしています。私はフォローしています sentdex 開始するためのビデオ。サンプルコードは完全に実行され、結果のテストに使用される画像も表示されますが、検出されたオブジェクトの周囲の境界は表示されません。平面画像だけがエラーなしで表示されます。
私はこのコードを使用しています: このGithubリンク 。
これは、サンプルコードを実行した後の私の結果です。
検出されない別の画像。
私がここで欠けているものは何ですか?コードは上記のリンクに含まれており、エラーログはありません。
ボックス、スコア、クラス、番号の順の結果。
[[[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.20880508 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.20934391 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.20880508 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.74907303 0.14624023 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]]]
[[ 0.03587547 0.02224986 0.0186467 0.01096812 0.01003207 0.00654409
0.00633549 0.00534311 0.0049596 0.00410213 0.00362371 0.00339186
0.00308251 0.00303347 0.00293389 0.00277099 0.00269575 0.00266825
0.00263925 0.00263331 0.00258657 0.00240822 0.0022581 0.00186967
0.00184311 0.00180467 0.00177475 0.00173655 0.00172811 0.00171935
0.00171891 0.00170288 0.00163755 0.00162967 0.00160273 0.00156545
0.00153615 0.00140941 0.00132407 0.00131524 0.0013105 0.00129431
0.0012582 0.0012553 0.00122365 0.00119186 0.00115651 0.00115186
0.00112369 0.00107097 0.00105805 0.00104338 0.00102719 0.00102337
0.00100349 0.00097762 0.00096851 0.00092741 0.00088506 0.00087696
0.0008734 0.00084826 0.00084135 0.00083513 0.00083398 0.00082068
0.00080583 0.00078979 0.00078059 0.00077476 0.00075448 0.00074426
0.00074421 0.00070195 0.00068741 0.00068138 0.00067262 0.00067125
0.00067033 0.00066035 0.00064729 0.00064205 0.00061964 0.00061794
0.00060835 0.00060465 0.00059548 0.00059479 0.00059461 0.00059436
0.00059426 0.00059411 0.00059406 0.00059392 0.00059365 0.00059351
0.00059191 0.00058798 0.00058682 0.00058148]]
[[ 1. 1. 18. 32. 62. 60. 63. 67. 61. 49. 31. 84. 50. 54.
15. 44. 44. 49. 31. 56. 88. 28. 88. 52. 17. 32. 38. 75.
3. 33. 48. 59. 35. 57. 47. 51. 19. 27. 72. 4. 84. 6.
55. 20. 58. 65. 61. 82. 42. 34. 40. 21. 43. 64. 39. 62.
36. 22. 79. 46. 16. 40. 41. 77. 16. 48. 78. 77. 89. 86.
27. 8. 87. 5. 25. 70. 80. 76. 75. 67. 65. 37. 2. 9.
73. 63. 29. 30. 69. 66. 68. 26. 71. 12. 45. 83. 13. 85.
74. 23.]]
[ 100.]
[[[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.68494415 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.68494415 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0.00784111 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.68494415 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.68494415 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.68494415 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.68494415 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.68494415 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.68494415 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0. 1. 1. ]
[ 0. 0.68494415 1. 1. ]
[ 0. 0.68494415 1. 1. ]]]
[[ 0.01044297 0.0098214 0.00942165 0.00846471 0.00613666 0.00398615
0.00357754 0.0030054 0.00255861 0.00236574 0.00232631 0.00220291
0.00185227 0.0016354 0.0015979 0.00145072 0.00143661 0.00141369
0.00122685 0.00118978 0.00108457 0.00104251 0.00099215 0.00096401
0.0008708 0.00084773 0.00080484 0.00078507 0.00078378 0.00076876
0.00072774 0.00071732 0.00071348 0.00070812 0.00069253 0.0006762
0.00067269 0.00059905 0.00059367 0.000588 0.00056114 0.0005504
0.00051472 0.00051057 0.00050973 0.00048486 0.00047297 0.00046204
0.00044787 0.00043259 0.00042987 0.00042673 0.00041978 0.00040494
0.00040087 0.00039576 0.00039059 0.00037274 0.00036831 0.00036417
0.00036119 0.00034645 0.00034479 0.00034078 0.00033771 0.00033605
0.0003333 0.0003304 0.0003294 0.00032326 0.00031787 0.00031773
0.00031748 0.00031741 0.00031732 0.00031729 0.00031724 0.00031722
0.00031717 0.00031708 0.00031702 0.00031579 0.00030416 0.00030222
0.00029739 0.00029726 0.00028289 0.0002653 0.00026325 0.00024584
0.00024221 0.00024156 0.00023911 0.00023335 0.00021619 0.0002001
0.00019127 0.00018342 0.00017273 0.00015509]]
[[ 38. 1. 1. 16. 25. 38. 64. 24. 49. 56. 20. 3. 28. 2.
48. 19. 21. 62. 50. 6. 8. 7. 67. 18. 35. 53. 39. 55.
15. 57. 72. 52. 10. 5. 42. 43. 76. 22. 82. 4. 61. 23.
17. 16. 87. 62. 51. 60. 36. 58. 59. 33. 31. 54. 70. 11.
40. 79. 31. 9. 41. 77. 80. 34. 90. 89. 73. 13. 84. 32.
63. 29. 30. 69. 66. 68. 26. 71. 12. 45. 83. 14. 44. 78.
85. 46. 47. 19. 65. 74. 37. 27. 63. 88. 28. 81. 86. 75.
27. 18.]]
[ 100.]
EDIT:提案された回答によると、faster_rcnn_resnet101_coco_2017_11_08
モデルを使用すると機能します。しかし、それはより正確であり、それが遅い理由です。リアルタイム(ウェブカメラ)のオブジェクト検出で使用するため、このアプリケーションを高速で使用したいと考えています。したがって、より高速なモデルを使用する必要があります(ssd_mobilenet_v1_coco_2017_11_08
)
問題はモデルにあります:'ssd_mobilenet_v1_coco_2017_11_08'
解決策:別のバージョンに変更する'ssd_mobilenet_v1_coco_11_06_2017'
(このモデルタイプは最速です。他のモデルタイプに変更すると遅くなり、必要なものではなくなります)
1行のコードを変更するだけです。
# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
コードを使用すると、何も表示されませんが、以前の実験モデルに置き換えます'ssd_mobilenet_v1_coco_11_06_2017'
正常に動作します
回避策として、#MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_08'をMODEL_NAME = 'faster_rcnn_resnet101_coco_2017_11_08'に変更します。
古い「ssd_mobilenet_v1 ...」を使用して、プログラムをボックスで完全に実行できます(私は今実行していますが、正しいです)。これは リンク この古いバージョンへのリンクです。彼らがすぐに新しいバージョンを修正することを願っています!
私は以前同じ問題を抱えていました。
しかし、最近新しいモデルがアップロードされました'ssd_mobilenet_v1_coco_2017_11_17'
私はそれを試し、魅力のように機能します:)